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The recently developed asymptotic theory of wave propagation is extended to slightly inhomogeneous 
and slowly varying anisotropic media which exhibit both spatial and temporal dispersion. A particular 
form of the constitutive relation is first introduced. Asymptotic solutions are then obtained by assuming 
a series solution "ansatz" into Maxwell's equations and the constitutive relation. The eikonal equation 
and the transport equation are obtained, by a procedure similar to that of Lewis, for lossless media, in 
which a Hermitian operator is involved. The modified transport equations obtained from other forms of 
the constitutive relation are given. They are interpreted as generalized Poynting theorems for appropriate 
physical situations. Finally, as a by-product of this work the space-time conduc!ivity tensor of aniso­
tropic plasmas C7(r, t), which is the 4-dimensional Fourier-Laplace transform of C7(k, 00), is found to be 
very simple. 

1. INTRODUCTION 
Recently the asymptotic method has been developed 

for a large class of problems of wave propagation. l 

In particular, Lewis applied the method to obtain the 
time-dependent solutions of dispersive hyperbolic 
partial differential equations2 and an integro-differ­
ential equation describing electromagnetic wave 
propagation in temporal-dispersive media.3 He intro­
duced formally a large parameter into the asymptotic 
solution, and expanded the asymptotic solution in 
terms of inverse power of this large parameter. He and 
his co-workers then applied this method to various 
problems of wave propagation involving time-depend­
ent solutions.4- 7 

In this paper, the recently developed asymptotic 
theory is extended to the problem of wave propagation 
in spatial- and temporal-dispersive slightly inhomo­
geneous and slowly varying media. Temporal dis­
persion occurs when the characteristic frequencies 
of the medium, e.g., the resonance absorption fre­
quency of molecules, the plasma frequency and the 
cyclotron frequency of plasmas, lie within the fre­
quency range of the exciting sources. Different fre­
quency components of the signal are absorbed and 
reradiated in different amounts, with the result that 
different frequency components propagate with differ­
ent velocities. The waveform of the signal is distorted. 
On the other hand, if the characteristic length of the 
medium, e.g., molecular dimensions, lattice constants, 
Debye radius, is comparable to the wavelength of the 
wave we are studying, then spatial dispersion occurs. 
Weak spatial dispersion happens, for example, in 
birefringence, longitudinal waves, and Cerenkov 
radiation.8 •9 In some more complicated media, e.g., 
plasmas under certain conditions, strong spatial 
dispersion occurs. 

In Sec. 2 an appropriate form of the constitutive 

relation for slightly inhomogeneous and slowly 
varying anisotropic media with both spatial and 
temporal dispersion is first introduced. The particular 
form was obtained through the study of the problem 
of electromagnetic wave propagation in slightly 
inhomogeneous and slowly varying anisotropic warm 
plasmas. In such a medium, the constitutive relation 
is obtained in Appendix A by solving the linearized 
Boltzmann equation with the aid of the method of 
characteristics. As a by-product of such a study, it'is 
found that, for homogeneous, time-invariant aniso­
tropic warm plasmas,. the space-time-conductivity 
tensor a(r, t), which is the 4-dimensional Fourier­
Laplace transform of aCk, w), is very simple. 

The asymptotic parameter is then introduced into 
the Maxwell's equations and the constitutive relation, 
to obtain hyperbolic equation of convolution type 
with a large parameter. Then, by inserting an appro­
priate expression involving a "phase function" and 
an infinite series of "amplitude functions" into this 
hyperbolic equation, we derive two asymptotic 
governing equations: One relates the phase function 
and the first term of the series of amplitude functions. 
The other involves terms up to the second. The third­
order term is discussed in Appendix B to study the 
limits of applicability of the asymptotic solution. As 
an example, we show that these general asymptotic 
governing equations reduce to the result obtained by 
BloomberglO for longitudinal waves in warm plasmas. 

By restricting ourselves to lossless media where the 
operator is Hermitian in Sec. 3, we proceed as follows: 
From the first of the asymptotic governing equations, 
we derive a first-order partial differential equation 
for the phase function, the "dispersion relation," 
which is solved by the method of characteristics. The 
characteristic curves are determined by integrating the 
characteristic equations or ray equations. The phase 
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function is readily obtained from the eikonal equation. 
The transport equation for amplitude function is 
derived from the second asymptotic governing equa­
tion. Finally the initial value problem for the phase 
function and the amplitude function are formulated. 
The results obtained here are an extension of Lewis's 
treatment of wave propagation in temporal-dispersive 
media3 to the more complicated spatial- and temporal­
dispersive media. Let us also note that Weinbergll 

considered the case of wave propagation describable 
by a general differential operator. The study of hyper­
bolic equations of convolution type can be considered 
as an extension of his result. 

In Sec. 4, transport equations derived from two 
other forms of the constitutive relation and Maxwell's 
equations are obtained. One form of the constitutive 
relation gives rise to a transport equation which 
asymptotically satisfies energy conservation of the 
wave. The transport equations obtained are interpreted 
as generalized Poynting theorems for appropriate 
physical situations. 

Finally, in order to use the result here, initial 
conditions for the ray equation, eikonal equation, 
and transport equation are required. Some conditions 
can be obtained directly from the initial data. Others 
require the asymptotic solution of a "canonical 
problem," which is the asymptotic evaluation of the 
exact solution for the corresponding homogeneous 
media. Such solutions are ample in literature. We here 
refer to Lewis's work.3 

2. ASYMPTOTIC GOVERNING EQUATIONS 

In this section we derive asymptotic governing 
equations for electromagnetic wave propagation in 
spatial- and temporal-dispersive inhomogeneous and 
slowly varying media, which are described by the 
equations 

( tJii ~ - ~)Ei - ~ 02~i = o. 
OXkOXk OXiOXi EOC ot (2.1) 

Summation notation is used throughout this work. 
The summation over repeated indices is from 1 to 3. 

The constitutive relation for inhomogeneous and 
slowly varying spatial- and temporal-dispersive media 
is proposed to be 

1 it Joo J-i
tT
+

OO 
D;(r, t) = --4 dt' da.:' dw 

(27T) 0 -00 -itT-OO 

X I: d3kEii(r - r', t - t'; k, w) 

x exp [j(wt' - k • r')]Elr - r', t - t'). 

(2.2) 

Here we have assumed E(r, t) = 0 for t < O. For 
homogeneous and time-invariant media the dielectric 
tensor Eii(r, t; k, w) reduces to Eij(k, w), which is the 
conventionally used time-harmonic dielectric tensor. 
The modification for inhomogeneous and slowly 
varying media is obtained from the study of electro­
magnetic wave propagation in anisotropic, inhomo­
geneous warm plasmas. In that particular problem, 
the constitutive relation is obtained in Appendix A 
by solving the linearized Boltzmann equation with 
the help of the method of characteristics. Other 
forms of the constitutive relation will be discussed 
later in Sec. 4. 

We proceed to derive asymptotic governing equa­
tions formally. The limits of the applicability of the 
asymptotic solution is discussed in Appendix B. In 
order to derive asymptotic governing equations for 
(2.1) and (2.2), let us note that the asymptotic solution 
for large Irl or t of the corresponding homogeneous 
and time-invariant media can be obtained by the as­
ymptotic evaluation of the exact solution in the 
form of an inverse Fourier-Laplace integral,12 The 
asymptotic solution is of the form 

E(r, t) = exp [-jS(r, t)] L A nCr, t) , (2.3) 
(jAY' 

with 

A = 0 [max (Irl, ct)]. 

Equation (2.3) will be used as the "ansatz" of asymp­
totic solutions for inhomogeneous and slowly varying 
media. Following Lewis,3 we make the following 
transformation in (2.1), (2.2), and (2.3) by r --+ Ar 
and t --+ At. The effect of this is to change the units. 
Equation (2.1) remains the same, while (2.2) becomes 

1 iAt Joo J-itT+oo D;(Ar, At) = -- dt' d3r' dw 
(27T)4 0 -00 -itT-OO 

X L: d3kEilAr - r', At - t'; k, w) 

x exp [j(wt' - k· r')]Ej(Ar - r', At - t'). 

(2.4) 

The ansatz (2.3) is now of the form 

A"(Ar At) 
E(Ar, At) = exp [-jS(Ar, At)] 1 (jA)" . (2.5) 

Equation (2.4) can be written as 

1At foo D;(Ar, At) = dt' d3r'Ei lAr - r', At - t'; r', t') 
o -00 

x ElAr - r', At - t') (2.6) 
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and 

Eij(Ar, At; r', t') 

= _1_ 1-i
O"+00 dwi

oo 
d3kEij(Ar, At; k, w) 

(27T)4 -j,,-oo -00 

X exp [j(wt' - k • r')], t' > 0, 

= 0, t' < 0. (2.7) 

Also, the inverse transform for (2.7) is given by 

E;p.r, At; k, w) = roo dt'i
OO 

d3r' Eji(Ar, At; r', t') Jo -00 

X exp [-j(wt' - k . r')]. (2.8) 

Substitution of (2.5) into (2.6) and the expansion in 
A yield 

D;(Ar, At) 

= ().tdtlfOO d3r'{E;lAr, At; r', t') Jo -C<) 

- A-1[t'(Eij)t + X~(€ij)",.1 + ... } 
X exp {-j[S(Ar, At) - A-1Stt' - A-1S",vX~]} 

X [1 + (2jA)-2(Sttt'2 + 2St"'vt'x~ + S"'/I"'Vx~x~) + ... ] 
X (~ ~ {A~(Ar, At) - A-1[t'(A'j)t + x~(A~)",v] 

n~O (JA) 

+ (2Ar2[t'\A~)tt + 2t'X~(A~)t:rv 

+ x~x~(A ')"'/1"'.] + ... } ) . (2.9) 

Introduce the local wave vector k and frequency w 

kv = A-IS", (Ar, At), w = -A-1StCAr, At), (2.10) 
v 

and the relationship 

OEii (Ar, At; k, w) =lOOdtlfOO d3r'(jx~)EilAr, At; r', t') 
okv 0-00 

X exp [-j(wt' - k· r')], (2.11) 

OE;; (Ar, At; k, w) = roo dt'fOO d3r'( - jt')Ei;(Ar, At; r', t') 
ow Jo-oo 

X exp [-j(wt' - k . r')]. (2.12) 

With the aid of (2.8), (2.10), (2.11), and (2.12), (2.9) 
becomes 

D;(Ar, At) = exp [-jS(Ar, At)] 

X {Eij(Ar, At; k, w)A~ + j~[ t( -WlEii)",,,, 

+ 2(kvMEij)"'kv + 2 I (k/l)",.(E;;\}tv /I>V 

+ (kv)",v(Eij)kVkV) A~ 
+ (Eij)",(A~)t - (Eii)k.(A~)",v 

+ EijA~ + [(E;i)t", - (Eii)"'vkv]A~J + .. J 
(2.13) 

Inserting (2.5) and (2.13) into (2.1) and equating the 
coefficients of (jA)-n, one arrives at the following: 

[b;jke - kik j - w2c-2Ei;().r, At; k, w)][A~(Ar, At)] = 0, 

(2.14) 

[bijke - kik i - w2c-2Ei;(Ar, At; k, w)][A~(Ar, At)] 

( ~ okv Oki) 0 -2 _ 0 _) 0 + Uij - - - (Ai) - C [WtEijAj + 2W(Eij tAj 
oXv ox; 

+ 2WEilA~)t + 2w(kv)lEii\vA~ + 2WWtCEii)",A~] 

- tw2C2(WlEij)",ro + 2(k')tCEij)rokv + 2 I (k/l)"'v(Eii)k/lkV /I.V 
/I>V 

+ (k.)",.(Eij)kvkv )A~ - W2C-2[(Eij)ro(A~)t - (Eij)kV<A~)",.1 
- W2C-2[(Eii)t", - (Eij)k.",JA~ = 0. (2.15) 

Equations (2.14) and (2.15) are then written in a 
compact form as follows: 

[Lij][A~(Ar, At)] = 0, (2.16) 

[Lij][A}(Ar, At)] + ![i (aLii) _ ~ (aLii) 
2 dt ow bxv okv 

+ ~(OLij) _ ~(aLij)J[A~(Ar, At)] 
ot ow axv okv 

oL .. oAo oL .. oA~ + _"_, - _>1_' = 0, (2.17) 
ow ot ok. ox. 

where 

k" = A-1S",/Ar, At), w = -A-1S,(Ar, At). (2.10) 

After having obtained asymptotic governing equa­
tions (2.16)-(2.20), let us remove the large parameter 
A from these governing equations as follows: Intro­
duce Ar ~ r and At --+ t, so that rand t are measured 
with the original unit. The asymptotic governing 
equations are then given by 

[Lij][A~(r, t)] = 0, (2.21) 

1 1 1 [d (OL") b (OL") r [Lij](A;(r, t)] + - - _u ___ 'J 

2 bt ow bx. ok. 

+ ~(aLij) _ ~(OLij)J[A~(r, t)] 
at ow axv ok, 

aL .. oAo oL .. aAo 
+ _OJ _, _ _ OJ _, = 0, (2.22) 

ow ot ok. oXv 
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with 

kJl = SI£ (r, t), w = -Se(r, t). (2.24) Jl 

Equations (2.19) and (2.20) remain unchanged. 
We have derived asymptotic governing equations 

for the specific problem of electromagnetic wave 
propagation in spatial- and temporal-dispersive, 
slowly varying, and inhomogeneous media. However, 
the asymptotic governing equations obtained are 
quite general. In particular, let us show that (2.21) and 
(2.22) are valid for the problem of transient longitu­
dinal wave propagation in inhomogeneous, slowly 
varying warm plasmas. This problem has been 
treated by BloomberglO based on solving the linearized 
Vlasov equation with the aid of the method of 
characteristics. To obtain asymptotic governing 
equations for this simplified example from (2.21) 
and (2.22), let us note that the problem of longitu­
dinal wave propagation is a scalar problem governed 
by the approximate dispersion equation 

w;(x, t) 3k; 2 
L(x, t) = 1 - --2 - - -2 (V(x, t», (2.25) 

w w 

with wp the plasma frequency 

wp(x, t)2 = N(x, t)e2/mEo (2.26) 

and < V(x, t)2) the mean square velocity of electrons 

(V(x, t)2) = KTe(x, t)/4m, (2.27) 

where N(x, t) is the density of electrons, K is Boltz­
mann's constant, Te(x, t) is the electronic temperature 
of plasmas, and m is the mass of the electron. 

By using (2.25), (2.21), and (2.22), one obtains the 
following equations: 

L(x, t)AO(x, t) = 0, (2.28) 

A-I ~ L(x, t)Al(X, t) 
2 

+ aA
o + u aA

o + [2Wp awp _ ~ ~ ow _ 2U oW 
at ax w2 ot 2 w at w ox 

! U okl£ + ~ O(V2) + !(~ \2 O(V2)]AO = 0, 
+ 2 kl£ ox (V2) ax 3 (V2») at 

(2.29) 
where 

ow 3kl£ 2 
U = - = - (V ). (2.30) ok", w 

For w c::::. wp , (2.29) reduces to that obtained by 

Bloomberg except that there are two extra terms 

1 ( U )2 O(V2) 0 1 W 1 
- - --' A and r - L(x t)A . 
3 (V2) at 2 ' 

The first term was ignored in Bloomberg, and the 
second term cannot be obtained unless a series form 
solution is assumed. Bloomberg did not solve (2.28) 
and (1.29), while the solution in Sec. 3 for the general 
case can be easily applied to this special case. 

3. ASYMPTOTIC SOLUTIONS OF A GENERAL 
HERMITIAN SYSTEM OF EQUATIONS 

In order to have a nontrivial solution AO for (2.21), 
it is necessary that 

as as 
L(r, t; k, w) = det Lij = 0, k. = -, W=--. 

ax. at 

(3.1) 
Let us assume that Lij is Hermitian, i.e., 

Li~(r, t; k, w) = Lj;(r, t; k, w). (3.2) 

It immediately follows that, for some k, w, r, and I, 

(3.1) defines a functional relation, which is called the 
dispersion relation. Assuming nondegeneracy for 
matrix Lij , one writes R(r, I; k, w) as the null 
eigenvector: 

LijRj = O. 

For brevity of formulas we choose the normalization 
constant such that 

R~ aL R. = 1 (3.3) 
'ow' ' 

The eigenvector R characterizes the polarization of 
the wave. 

The dispersion relation (3.1) is a first-order non­
linear partial differential equation for the phase func­
tion S(r, t) and can be solved by the Hamilton­
Jacobi theory. One thus introduces the characteristic 
equations or ray equations 

dx. oL dt aL 
dT = ak.' dT = - ow ' 

(3.4) 
dk. oL dw aL 
dT = - ax.' dT - at ' 

where T is the parameter along the ray. On using the 
parameter t to replace T, one obtains 

dx. oLlaL ow 
dt = - ok. aw = ok. = v.,., 
dk. oLlaL ow 
dt = ax. ow = - ax. ' (3.5) 

dw = _ oLlaL = ow , 
dt ot ow at 
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where Vg is the group velocity. The phase function 
satisfies the eikonal equation 

s = dS = oS + oS x = -w + k V 
dt ot ox.' • y. 

= -w - k. OL/OL . 
ok. ow 

(3.6) 

Note that (3.5) and (3.6) can be solved numerically. 
They have already been given by Weinbergll for the 
case of a general differential operator L(r, - jV) for 
the time-harmonic problem. The spatial- and temporal­
dispersive, inhomogeneous, and slowly varying me­
dium treated here is an extension of his. Without 
spatial dispersion, (3.6) and (3.5) reduce to the ray 
equation given by Lewis. 3 

Before proceeding to derive the transport equation, 
we give an alternative formula for the group velocity. 
Taking the scalar product of Ri and LijRj, one 
obtains 

Differentiation of (3.20) leads to the following: 

( 
-* OLii R- ) ow -* oLij -
R· - . - + R· - R. = ° 'ow 'ok. 'ok.' , 

V = ow = -R* aLi; k/R* OLii R. 
o. ok. 'ok." ow ' 

(3.7) 

(3.8) 

-* oLi; -= -R - R. (3.9) 
i ok ,. 

• 
With the aid of (3.9), we are ready to derive the trans­
port equation. 

Again, assuming no degeneracy, we let 

AO = aR. (3.10) 

First, taking the scalar product of ~ and (2.22) leads 
to 

Ri[~(OLij) _ ~(OLi;)JA~ 
2 ~t ow ~x. ok. 

-* 02 
(

2
) Ri (Li; Li; AO +------ j 

2 otow ox.ok. 

+ R:(OLii oA~ _ aLi; OA~) = 0, (3.11) 
ow at ok. ox. 

where use has been made of the fact that 

(3.12) 

Inserting (3.10) into (3.11), one obtains 

(3.13) 

On using (3.3) and (3.9), we arrive at 

da da oa oa - + Cl.a = 0, - = - + V - (3.14) 
dt dt ot u. ox. 

where Vg is given by (3.9) and CI. is defined as 
• 

CI.=--- --- R. R:[~ (OL;;) (} (OLi ;)]-

2 ~t ow (Jk. ok. ' 
-* ~2 ~2 Ri (U Lii U Lij ) -* +-----R. 
2 otow ox.ok. ' 

-* aLi; (JRi -* aLii (JR j 
+ R. -- - R. -- (3.15) 

, ow (Jt ' ok. (Jx •. 

Attempting now to solve the transport equation, 
we start by deriving a differential equation for lal as 
follows: 

(3.16) 

d lal2 da* * da * 2 -- = - a + a - = -(CI. + CI. ) lal, (3.17) 
dt dt dt 

dial * - + i(CI. + CI. ) lal = 0, (3.18) 
dt 

with 

CI. + CI. = R· - - - - - R. * -*[ (J (OLi;) (J (aLii) ] _ 
, (Jt Ow (Jx. iJk. ' 

_*(02Lii a2Lii ) _ 
+R j ----- R; 

otow ox.ok. 
O - -* iJ -* Lji (JR j (JRi L.i -

+Ri--+--R 
Ow (Jt (Jt Ow j 

-* aLi; dR j (JR: aLii _ 
- R j -- - --R i . (3.19) 

iJk. (Jx. (Jx. iJk. 

On observing the symmetry of CI. + CI. *, one writes 
(3.18) in the following suggestive form: 

d 1 (ov:.. ok. ow) -Ial + - - - - - - lal = 0. (3.20) 
dt 2 ax. okv ow 

Here we have redefined 

R[r, t; k(r, t), w(r, t)] = R(r, t); 
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as a result, 

bR oR 
- [r, t; k(r, t), w(r, t)] = - (r, t). 
bt at 

bR oR 
- [r, t; k(r, t), w(r, t)] = - (r. t). 
bx. ox. 

The divergence of Vg is given by 

oVg
• a ( * aLii ) ----R -R 

ox. - ox. i ok. i 

= - --R.+R. - -- R· [
oR: aLii * b (OL'i) 
ox. ok.' , bx. ok. J 

Also, 

* aLii ORi] +Ri --. 
ok. ox. 

* aLii k=R.-R., 
• • ox. ' 

OL .. 
. - R*-"R w - - i at ,i' 

(3.21) 

(3.22) 

(3.23) 

Equations (3.22) and (3.23) are derived in the same 
way as (3.9). 

To integrate the transport equation, let us invoke 
the following lemma. 

Lemmcfl' 12: If the differential equations dx.fdt = 
Vg admit a solution x. = x.(t. r). y = I. 2, 3, de-

• 
pending on the three parameters r = (Y1. Y2. Ya), 
then the Jacobianj(t, r) satisfies 

d oVg (ox.) - lnj(t, r) = -', jet, r) = det -' . (3.24) 
dt ox. 0Yi 

Applying this lemma to (3.20). one obtains 

~ In {Ial [jet, r)]i} _ !(Ok. + OW) = O. (3.25) 
dt 2 ok. ow 

This is integrated to give 

(
j(to , r))l It 1 (okv OW) la(t)1 = la(to)1 -.-- exp - - + - dr. 
J(t, r) to 2 okv ow 

(3.26) 
To derive the phase angle of a, we set 

a = lal exp (-jO). (3.27) 

Substitution of (3.27) into (3.14) gives 

dial dO 
- - j lal- + ex lal = O. 

dt dt 
(3.28) 

The imaginary part of (3.28) is 

dO 
- - (Jm ex)O = 0, 
dt 

which is integrated to yield 

(3.29) 

o = 0o + relm ex dr. (3.30) 
JfO 

Since AO = aR and a = R:(oLij/ow)A~, (3.26) and 
(3.30) lead to 

° (j(to, r»)i it [1 (ok. OW) ] A (t) = -. -- exp - - + - - j 1m IX dr 
J(t, r) to 2 ok. ow 

x [R: aLii A~J R(t). (3.31) 
ow to 

Equation (3.31) gives the amplitude function AO(to) 
at any time for any ray in terms of the initial ampli­
tude function AO(to). The exponential term in (3.31) 
provides the term due to the inhomogeneity, 
H(ok./ok.) + (ow/ow)], and the phase shift, 1m ex, 
along the ray. Since the Jacobianj(t, r) measures ray 
density, it appears in (3.31). 

4. THE LAW OF ENERGY CONSERVATION 
AND OTHER FORMS OF THE 

CONSTITUTIVE RELATION 

In the previous sections, asymptotic solutions of 
wave propagation in spatial- and temporal-dispersive, 
slightly inhomogeneous, and slowly varying media 
with a particular form of the constitutive relation 
has been obtained. In this section, we focus our 
attention on the transport equation and give its phys­
ical interpretation. Competitive transport equations 
based on other forms of the constitutive relation are 
discussed also. We begin by deriving a transport 
equation for slightly inhomogeneous and time­
invariant media where energy of the propagating 
wave is conserved. 

A. A Transport Equation for Wave Propagation 
in Inhomogeneous and Time-Invariant Media 

Based on Energy Conservation 

Let us write the conservation law for the total energy 
of waves in its differential form in the phase space: 

au a a - + - (V u) + - (k u) = 0 (4.1) at ox. g. ok.' • 
with u as energy density. Here we have assumed that 
energy of the wave is conserved. 

In the physical space there is only one value of 
k(r, t) at the point r, t. Therefore, u is given by 

u(r, t; k, w) = O(r, t; k, w)b[k - k(r, t)]. (4.2) 
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On carrying out the integration of (4.1) with respect 
to k, one has 

00 + ~ (VyP) + ~ (kv O) = o. (4.3) at oXv okv 

Note that the differentiation is carried out with 
respect to Xv with k as constant. Functions which 
appear in (4.3) are 

Redefining 

one obtains 

o = O[r, t; k(r, t), w], 

dx v _* oLij _ 
-= -R· -R-= V 
dt 'ok

v 
3 Uv' 

dkv = 'R* aLii 'R. = k 
dt 'ox

v 
1 v' 

R = R[r, t; k(r, t), w), 

Lii = Lij[r, t; k(r, t), w]. 

O[r, t; k(r, t), w] = VCr, t), 

R[r, t; k(r, t), w] = R(r, t), 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

oV + V oV = 00 + V 00 + k 00 (4.10) 
:l Uv :l :l Ov :l V:l' ut UXV ut UXv ukv 

Equations (4.3) and (4.10) lead to 

v~nishes. Therefore, for wave propagation in inhomo­
geneous media, the Poynting theorem is different 
from that for homogeneous media in the case when 
the energy of the propagating is conserved. 

In the problem of wave propagation in inhomo­
geneous temporal- dispersive media which Lewis 
studied,3 the transport equation can easily be shown 
to satisfy energy conservation. To do this, we con­
sider the temporal-dispersive operator 

The group velocity formula is 

Also, 

kv = -Ri ~ [kvAV - WE(W, xv)]R i . 
axv 

Equation (4.11) yields 

(4.15) 

(4.16) 

(4.17) 

dV oVgV * oAv 

- + - U - Ri - Rp = O. (4.18) 
dt oXv axv 

For the lossless case, (L.3.7.6) of Lewis is equivalent 
to (4.18). 

Let 

B. Transport Equation Derived from the 
Constitutive Relation (2.2) 

v = lal 2
• (4.19) 

oV aU aVo\' (ok\') - + Vg - + - v + - U = O. (4.11) Then (3.33) can be written as at Y ox v ox" ok" 

This is then the transport equation for energy­
conservative propagating waves. 

Let us write (4; 11) in the form of the Poynting 
theorem. Let aR = E and a*R* = E* as an approxi­
mation, and let c2Lii/w replace Lii , since they are 
equivalent; we then have 

OV.. (ok\') - + dlV S = - - V, at ok, 
(4.12) 

where 

+ -(k x E*)(k x E) c
2 

) 

w2 
(4.13) 

and 

o ( * - E c
2

k
2 

E*E S, = - - Ei Weii j - -2 i f ok, . W 

+ :: (k x E*)(k x E»). (4.14) 

In homogeneous media, the right-hand side of (4.12) 

dU aVo, (ok. ok\, OW) - + - v = - - + 2 - + - U. (4.20) 
dt ox. ok. ok. ow 

Now, the first term on the right-hand side, 
- (ok./ok,)V, is due to the change of the wavenumber 
k of the wave, while [2(okv/ok,) + (ow/ow)]V is 
the energy supplied by the medium to ensure energy 
conservation of the whole system, the wave and the 
medium. Therefore, the propagating wave does not 
form a closed system. 

C. Transport Equations Based on Other Forms of 
the Constitutive Relation 

For the constitutive relation (2.2) assumed in 
Sec. 2, the characteristic constants are evaluated at the 
fixed point, i.e., Eij(r - r', t - t'; k, w) has been 
assumed for the inhomogeneous dielectric tensor. 
There are other ways of incorporating the inhomo­
geneity. For example, we can evaluate the character­
istic constants at the position of the displacement 
vector, i.e., Eif(r, t; k, w), or the mean value of the 
position of the electric field and that of displace­
ment, i.e., Eif(r - r'/2, t - t'/2; k, W).13 
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These modifications of the constitutive relation 
do not change the eikonal equation. However, the 
transport equation is different in each case. We shall 
give the transport equation for each modified form 
of the constitutive relation. Let us begin with the 
constitutive relation where the dielectric tensor is 
evaluated at the position of the displacement vector: 

Dlr, t) 

= ~ ltdt'l°O d3r'1-i<7+ °0 dwl°O d3k€';;{r, t; k, w) 
(27T) 0 -00 -i<7-OO -00 

X exp [j(wt' - k· r')]E;(r - r', t - t'; k, w). 

(4.21) 

Employing a procedure as given in Sec. 2, we obtain 

[Lii][A~] = 0, (4.22) 

1 1 [!5 (aLii) !5 (aLii) 
[LijHAi] + 2 6t aw - !5x. ak. 

_ !(aLii) + ~(OLiJ)J(A~) 
ot Ow ox. ok. 

+ OLii oA~ _ oLii oA~ = O. (4.23) 
Ow Ot ok. ox. 

The transport equation derived from (4.23) can be 
easily shown to be 

d 1 (OVu ok. OW) -10'1 + - -' + - + - 10'1 = O. (4.24) 
dt 2 ox. ak. ow 

For time-invariant media w = 0, (4.24) satisfies 
energy conservation, since it agrees with (4.11). 

On the other hand, taking the constitutive relation 
with the dielectric tensor evaluated at the mean value 
of the position of D and that of E, 

1 It 100 1-J
<7+00 Dir, t) = --4 dt' d~' dw 

(27T) 0 -00 -i<7-oo 

X L:d3k€'i;(r - ir', t - it.'; k, w) 

X exp [j(wt' - k • r')]E;(r - r', t - t'), 

(4.25) 
one arrives at the transport equation 

d 1 avy • 

-10'1 + --10'1 = O. 
dt 2 ox. 

(4.26) 

Therefore, a generalized Poynting theorem for in­
homogeneous media retains the same form as that 
for homogeneous media: 

aU + div S = O. (4.27) 
dt 

U and S are given by (4.12) and (4.13), respectively. 
In concluding, three different forms of the constitu-

tive relation for incorporating inhomogeneity and 
slow varyingness in spatial- and temporal-dispersive 
media have been discussed. Maxwell's equations, 
together with one form of the constitutive relation 
(4.21), satIsfies energy conservation asymptotically. 
However, since energy of the wave is not conserved, 
other forms of the constitutive relation are preferred 
for situations where the wave itself does not form a 
closed system. In particular, the constitutive relation 
(2.2) is most suitable for describing inhomogeneous 
plasmas in quasi-equilibrium, for it is derived through 
the microscopic consideration. This study somehow 
limits the accuracy of the conventional derivation of 
the equation of radiative transfer based on energy 
conservation. 
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APPENDIX A: THE CONSTITUTIVE RELATION 
FOR ELECTROMAGNETIC WAVES IN 

ANISOTROPIC, INHOMOGENEOUS 
WARM PLASMAS 

In this appendix we show that the constitutive 
relation for electromagnetic waves in anisotropic, 
inhomogeneous warm plasmas has the form assumed 
for general media. 

The phenomenon of electromagnetic wave prop­
agation in plasmas is determined by Maxwell's 
equations and constitutive relations. The constitutive 
relations are determined by the composition of 
plasmas, and can be obtained for different models: 
The simpler cold model is based on the electronic 
orbital motion. The more complicated warm model 
can be arrived at either in a crude approximation by 
introducing the pressure term into the electronic 
orbital motion used in the cold model or in an 
elaborate manner based on the kinetic theory by 
taking into account of the velocity spread of electrons. 
We derive the constitutive relation using the latter 
approach, but ignore the motion of ions for brevity 
of formulas. Briefly, the well-known method of 
characteristicsU is used to solve the linearized 
Boltzmann equation. Then the use of a simple trans­
formation leads to the space-time-conductivity tensor, 
which has not been obtained before. 

Consider the collisionless Boltzmann equation for 
the electronic distribution function j: 

~ e ~ - + v • Vi - - (E + v x B) • - = 0, (AI) at m av 
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where B includes the externally applied magnetic 
field Bo = Bo(r, t)l. and the magnetic field of electro­
magnetic waves and E is the electric fiel4 of electro­
magnetic waves. Assuming / = /0 + /1' with /1 as a 
small perturbation to the equilibrium Maxwellian 
distribution, we reduce (AI) to 

ofo ofo e .ofo - + v • - - - (v x Bo) • - = 0 (A2) 
ot or m ov 

and 

of1 of1 e ofl e ofo - + v . - - - (v x Bo) • - = - E • -. (A3) 
ot or m Ov m Ov 

Obviously, (A2) is satisfied by a Maxwellian di-stri­
bution/o: 

= N (V2)! exp [-2(V~. + V~. + VV] (A4) 
/0 (2'/T)! (V2) , 

where, for inhomogeneous and quasi-equilibrium 
plasmas, the mean square velocity is 

Here 

N(r, t) is the density of electrons, 
K is Boltzmann's constant, 
Te is the electronic temperature of plasmas. 

The solution of (A3) is given by 

f1(r, v, t) = fdto L: da.-od
3vog(ro, vo, to) 

(A5) 

X ~(r - R)~(v - V), (A6) 
with 

(A7) 

Under the influence of the external magnetic field, 
Bo(r, t)I., R(ro, Yo, to), and V(ro, Yo, to) are the 
classical asymptotic position and velocity of electrons 
in terms of their initial conditions ro and vo. Let us 
assume that the plasma is not very hot so that electrons 
with large gyrating radius rg are negligible, i.e., for 
most electrons rg = Ivol/wH = ImvoleBol is very 
small. Therefore, the assumption of weak inhomo­
geneity of the magnetic field leads to 

wH(rO + mvo X 1.leBo, t) '"'" wH(rO, t). (A8) 

Then, R and V are given by 

= ro + R/, 

V = vOp cos WH'T + vOp x I. sin WH'T + vo.'TI., 

vOp = Vo - vo)., 

WH '"'" wH(rO' t) = eBo(ro, t)m-I, 

'T = t - to. (A9) 

To see that (A6) is the solution of (A3), one simply 
differentiates (A6) with respect to t as follows: 

ofl 
- (r, v, t) 
ot 

= L: d3rod3vog(ro, Vo, t)~(r - ro)~(v - Yo) 

+ f dto L: da.-od3vog(ro, Vo, to) 

x :t [~(r - R)~(v - V)] 

= g(r, v, t) + [tdtoiO() da.-od
3vO Jo -00 

x e~· o~ [~(r - R)]~(v - V) 

+ °o~ . o~ [~(v - V)]~(r - R») 

= g(r, v, t) - [tdtoiO() da.-od
3vO Jo -0() 

X (v. E.. [~(r - R)]~(v ...;. V) 
or 

- - V x Bo . - [~(v - V)]~(r - R) eo) 
m ov 

( 0 e 0) = g(r, v, t) - V· or - m v x Bo • Ov fl(r, v, t). 

(AIO) 

Therefore, the current induced can be expressed as 

Jlr, t) = -e L: v/r(r,v, t)d3v (All) 

e
2 it ioo 3 3 ofo =-- dto drodvoV(ro,vo,to)-

m 0 -0() ovo 

• E(ro, to)~(r - R). (AI2) 

The last step follows from the substitution of (A6) 
into (All) and a subsequent integration with respect 
to v. Let us now change the variables of integration 
from dtod3vO to dtod3R/. Writing R' in terms of Vo 

explicitly, and vice versa, 

, sin WH'T 1 - cos WH'T 
X = vo• - vow ___ --=0.... 

WH WH 

I I - cos WH'T sin WH'T 
y = vo• + vow ,(A13) 

WH WH 
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and 

W~ (Sin WHT , 
~ = x 

• 2(1 - cos WHT) WH 

1 - cos WHT ,) + y , 
WH 

w~ (1 - cos WHT , 
Vo = - x 

• 2(1 - cos WHT) WH 

(AI4) 

sin wHT ,) + y , 
WH 

one easily obtains the Jacobian of the transformation 

a(vo.,vo.,vo.) = w~ (AI5) 
a(x', y', z') 2T(1 - cos WHT) 

Then the integration of (AI2) over ro leads to 

Jir, t) 

- - - dt' d3R'V[r - R' v (R' t - t' W ) t'] e
2 it 100 

- ,0, ,H, 
m 0 -00 

x aio [r - R' v (R' t - t' W ) t'] a ,0" H, 
Vo 

W~ , , 
x . E(r - R , t ), 

2(t - t')[1 - cos WH(t - t')] 
(AI6) 

with 
WH = WH(r - R', ('). (A17) 

It appears that (AI6) has a singularity at (' = O. 
However, a closer examination with the aid of (A4) 
and (AI4) gives a contrary conclusion. Let us now 
generalize the well-known convolution integral to 
the weakly inhomogeneous medium by introducing 
additional variables into the kernel: 

Jir, t) = r
t

dt , roo d3r'a(r', t'; r - r', t - t')· E(r', t') Jo J-oo 
= r

t

dt , roo d3r'a(r _ r', (- t'; r', t') 
Jo J-oo 
• E(r - r', t - ('). (AI8) 

It immediately follows that 

a(r - r', t - t'; r', t') 

= _e2m-1V[r - r', vo(r', t', wH), t - t'] 

aio [ '(" ) '] X - r - r, Vo r , t , WH , t - t 
avo 

w2 

X H , (A19) 
2t'(1 - cos wHt') 

where /0 IS given by (A4) and the characteristic 

constants are 

WH = wH(r - r', t - ('), N = N(r - r', ( - ('), 

(V2) = (V(r - r', ( - t')2). (A20) 

Thus, through the simple transformation (AI4), we 
have arrived at the conductivity tensor in r - ( space, 
which has not been given before. The simplicity of 
the form is rather striking. Even for weakly inhomo­
geneous plasmas, (AI9) does not involve any integra­
tion. To show that the space-time-conductivity tensor 
(AI9) derived for homogeneous media is equivalent 
to the conventional time-harmonic conductivity 
tensor, let us apply the four-dimensional Fourier­
Laplace transformation to (AI9): 

a(k, w) 

= roodt' roo dar' exp [-j(wt' - k. r')]a(r', t') Jo J-oo 
= 100 

dt' L: d3r' exp [-j(wt' - k • r')] ( - ~) 

( ") aio " w~ ) X V[vo(r, t ] - [vo(r, t )] . 
avo 2t'(1 - cos WHt') 

(A2l) 

Transformation of variables of integration from 
r' into vo, with the transformation given by (Al3), 
and the replacement of T by (' lead to 

a(k, w) = 100 

dt' L: d3vo exp { - j[wt' - k • r'(vo)]} 

x (- ~) (V(vo) :~: (vo»). (A22) 

Also, let 

v", = Vl. cos ex, VII = Vl. sin ex, v. = vII' (A23) 

Then 

Vo = Vl. cos (ex + WHT), Vo = Vl. sin (ex + WHT). . . 
(A24) 

Transformation of variables of integration from Vo to 
v and use of (A24) give 

a(k, w) = roo dt' roo d3v 
Jo Loo 

( 
., .kl.Vl. 

X exp -Jwt +J--
WH 

X [sin (ex + wHt') - sin ex] + jkllVllwHt') 

x [Vl. cos (ex) 1", + Vl. sin (ex) 111 + VII].] 

x (cos (ex + WHt) aio I", 
aVl. 

(A25) 
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This is equivalt::nt to (10·39) of Montgomery et al.15 

Finally, let us note that the inhomogeneous and 
slowly varying characteristic constants w H, N, and 
(V2) are evaluated at r - r' and t - t'. This agrees 
with the general form (2.2) for the constitutive 
relation in inhomogeneous, and slowly varying, 
spatial- and temporal-dispersive media. 

APPENDIX B: LIMITS OF APPLICABILITY 
OF ASYMPTOTIC SOLUTIONS 

Previously, in arriving at (2.14) and (2.15), we 
have expanded the governing equations (2.1) and 
(2.4) up to the second-order term. In case one pro­
ceeds to the third-order term, the equation obtained 
is 

2 1 [{J (aLii) {J (aLii) L·IA i +- - - ---
• 2 {Jt ow {Jx. ok. 

o2Lii o2Lii JA1 +------ I otow ox.ok. 
+ aLii oA~ _ aLi; oA~ = -c. AO, (Bl) 

ow at ok. ox. '} } 
where Ci ; involves many second-order terms. 

The solution of (BI) for A} is 

A~ = aR;, (B2) 

where we have taken only the force term in the solu­
tion, since the solution of the homogeneous equation 
for A} has the same form as that of the equation for 
A~. 

To satisfy A} « AA}, it is necessary that 

fta-lR7Ci;(aR;) dT« A. (B3) 

Equation (B3) reduces to the following two condi­
tions: First, at caustics the Jacobian j(t, r) is zero. 
Then integration by parts leads to the appearance of 
j(t, r) in the denominator of the integrand. As a 
result, (B3) is violated. Therefore, 

jet, r) ;;of O. (B4) 

One can reduce the inequality (B3) to some simplified 

inequalities. However, such a calculation is very 
tedious. We shall give a simple estimate. Let the 
medium be slowly varying: 

a€: .. 
R~ ~ R //1 • at ; "" . (B5) 

Then each term of (B3) can easily be shown to satisfy 
the inequality. Equation (B5) is then the second 
condition. 

Finally, in contrast to geometrical optics in non­
dispersive media, these conditions are not sufficient. 
In order that ansatz (2.3) is an assumed solution for 
dispersive media, it is imperative that 

(B6) 
where 

Achar is the characteristic length of 
spatial dispersion, 

Wehar is the characteristic frequency of 
temporal dispersion. 

Their significance has already been discussed in the 
Introduction. Equation (B6) is required so that the 
first term of (2.3) gives dominant contribution for 
homogeneous and time-invariant dispersive media. 
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Methods derived from the theory of several complex variables are used as a means of analyzing a class of 
two-dimensional transport problems in a scattering-and absorbing quarter space (0 ~ Xl, 0 :::;; Xa, - 00 ~ 
Xs ~ 00) described by a linear, one-speed Boltzmann equation. Using Fourier transformation and 
the Bochner decomposition, the multi variable analog of the Wiener-Hopf factorization, we find the 
Green's function in transform space, which solves all source problems having a solution bounded at 
infinity. The transform of the density asymptotically far from the corner (Xl = Xa = 0) is determined 
explicitly, while the remainder is given in terms of the solution to a pair of Fredholm equations. 

1. INTRODUCTION 

For the past forty years, the Wiener-Hopf tech­
niquel has proven to be a powerful tool in the analysis 
of integral equations over the half-line with a difference 
kernel. For that reason, one of its many applications 
has been to one-speed, linear transport in a half-space. 2 

The method is based on Fourier transformation and 
relies heavily upon the theory of functions of a 
complex variable. 

In this paper, we use a similar approach generalized 
to two complex variables to study two-dimensional 
transport in a quarter space. Here the basic integral 
equation is over a quarter plane, with the kernel 
depending upon distance in the plane. In Sec. 2, 
double Fourier transformation of the transport 
equation yields a two-variable Wiener-Hopf problem 
for four unknown transforms corresponding to the 
densities in each quarter space. A similar mathe­
matical problem arises in the theory of electro­
magnetic wave diffraction from a right angle dielectric 
wedge. Although an exact solution to the· diffraction 
problem is not yet available,a the Bochner decom­
position ,4 thelmuItivariable analog of the Wiener-Hopf 
factorization, was used in one of the analyses5 and is 
found to be a useful tool for our analysis as discussed 
in Sec. 3. In Sec. 4, the asymptotic contribution to the 
transforms is found explicitly by one-dimensional 
Wiener-Hopf analyses and is then subtracted, yielding 
an equation for a new set of four unknown functions 
representing the transforms of "transient" densities 
which are nonnegligible only near the corner. The 
properties of this new equation allow, by subsequent 
manipulations in Sec. 5, the solution to be expressed 
in terms of the solution to a pair of Fredholm equa­
tions derived in Sec. 6. Analogous to the one-dimen­
sional problem for a finite slab,6 these Fredholm 
equations appear to represent the interaction of the 

"transient" densities in the two quarter spaces ad~ 
jacent to the scattering and absorbing quarter space. 
It is shown that this pair of equations may be solved 
by iteration. 

2. FOURIER TRANSFORMATION OF THE 
TRANSPORT EQUATION 

We consider one-speed neutron transport in a quar­
ter space (Q), 0 ~ Xl' 0 ~ X 2 , - 00 ~ Xa ~ 00, with 
isotropic scattering and a given source distribution 
S(r) = S(XI' X2)' The integral transport equation for 
the neutron density per) is 

1 e-lr-r'l [ s(r')] 
per) = c , 2 per') + - dr', (2.1) 

Q 417 Ir - ric 

where distances are in units of a mean free path, rand 
r' are three-dimensional vectors, and c is the mean 
number of neutrons emitted per collision. Letting 
per) = P(XI' x2), S(r) = S(xl , x2), and performing the 
Xa integration, the transport equation (2.l) becomes 

P(XI' x 2) 

= c L>J IC() dx{ dx~K(lx - X'I>(P(X{, x~) + S(x{c' X~»), 

(2.2) 

where Ix - x'1 2 = (Xl - X{)2 + (x2 - X;)2 
kernel K has the integral representatioI). 

and the 

1 IC() e-ts dt 
K(s) = - . 

217S I t(t2 
- 1)i 

(2.3) 

For convenience, we now consider the integral 
equation for rp(XI' X2), - 00 ~ Xl, X2 < 00, with a 
specific inhomogeneous term as follows: 

rp(XI' x2) = c IC() IC() dx{ dx~K(lx - x'l)rp(x{, x;) 

+ {exp (-alxl - a2x 2), Xl' X 2 ~ O. 
0, otherwise 

(2.4) 

754 
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If cP is determined for arbitrary al and a2 in a strip 
in the complex plane, then cP plays the role of a 
Green's function in transform space. Specifically, if in 
(2.2) we let V(xl , x2) denote the inhomogeneous term 

V(xl , x2) = LXl LXl dx{ dx~K(lx - x'I)S(x{, x~) 

and V(al, a2) be the double Laplace transform of 
V(xl , x 2), 

Veal' a2) 

= LXlL<XldxldX2eXp(-alXl- a2x2)V(X1 ,X2), 

then we assert without proof that the solution to (2.2) 
may be given in terms of V and cP as follows: 

P(Xl' x 2) = (~)2 r r <p(x) , X 2 ; ai' a 2) 
2m Jr1 Jr, 

X V(-a) , -a2)da1da2, 

where r 1 and r 2 are vertical contours to the left of all 
the singularities of V( -aI' -a2) and to the right of all 
singularities of <P(Xl' x 2; ai' a2) == CP(Xl' X2)' 

We now use a simple device to transform the integral 
over the quarter plane to an integral over the whole 
(Xl' X2) plane so that we may make use of the con­
volution theorem of Fourier transforms. Let 

where Xi is the 
quadrant: 

{
I, 

Xl(Xl, X2) = 0, 

characteristic function of the ith 

o S Xl S 00, ° S X2 S 00 

elsewhere 

{
I, -ooSXl<O, 0SX2Soo 

X2(Xl, x2) = 0, elsewhere 

{
I, - 00 S Xl < 0, - 00 S x2 < ° 

Xa(xt. x 2) = 0, elsewhere 

{
I, ° S Xl S 00, - 00 S X2 < ° 

X4(Xl, X2) = 0, elsewhere 

In terms of the <Pi' Eq. (2.2) may be rewritten as 

CPl + <P2 + CPa + CP4 

= C L+<Xl<Xl L+<Xl<Xl dx{ dx~K(lx - X'I)TI(X{, X~) 
+ Xt(X l , X2) exp (-a1x1 - a2x 2). (2.6) 

Taking the double Fourier transform of the above 
equation, we find 

{1 - cK[(ki + k~)!]}<Pl(kl' k2) 

= - <l>2(kl' k2) - <Pa(kl , k2) 

- <Pikl , k2) + l/(a l - ikl )(a2 - ik2), (2.7) 

where the <Pi are the double transforms of the CPi: 

<I>;(kl' k2) = L+ooOO L+oooo dX l dX2 

X exp (iklxl + ik2x2)<P;(X1 , x 2), i = 1, ... ,4, (2.8) 

and 

K(k) = (tan-Ik)/k. (2.9) 

With c < I and Re (aI' a2) ~ 0, CPl(Xl, X2) will be 
a bounded function of Xl and X2 • From (2.3) and (2.4), 
the cP i will be analytic in the following sets of half­
planes: 

cPl:{lm kl > 0, 1m k2 > O}, 

cP2 :{lm kl < 1, 1m k2 > O}, 

cPa: {1m kl < 1, 1m k2 < o} 

u {1m kl < 0, 1m k2 < I} 

U {(1m k1)2 + (1m k2)2 < I}, 

cP4 : {1m kl > 0, 1m k2 < I}. 

This is illustrated in Fig. 1. Note that all four of the 
cP; have a common tube of analyticity: 

TIP = {1m kl > 0, 1m k2 > O} 

('\ {(1m kl)2 + (1m k2)2 < I}. (2.10) 

The goal is to determine cPl(kl , k2), which by 
inverse Fourier transformation gives the neutron 
density in the quarter space. What we have, then, is 

FIG. 1. Domains of analyticity of the <1I,(k" k.) with Re a" 
Rea. 2 o. 
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the analogous Wiener-Hopf problem for two com­
plex variables. Instead of two unkno)¥n functions 
which are analytic in a common strip and each 
analytic in opposite half-planes, we have four func­
tions {<Pi' i = I, 2, 3, 4}, which are analytic in the 
common tube T$' each being analytic in a respective 
set of half-planes. Unfortunately, the factorization of 
the function 1 - cK, although possible and very 
useful, as will be shown, does not seem to yield a 
closed form solution, as it does in the one-dimensional 
problem. 

3. BOCHNER DECOMPOSITION OF 1 - eX 
In the analogous one-dimensional problem. one 

factors the function 

A(k) = 1 - c/{(k) 

into a product of two functions H+(k) and H-(k) , 
respectively analytic in the upper and lower k plane 
with a common strip of analyticity corresponding to 
the domains of analyticity of the unknowns <P+ and 
<P-. This is the Wiener-Hopf factorization, which, of 
course, is the key to the Wiener-Hopf technique. 
Subsequent manipulations and application of the 
Liouville theorem yield the closed-form solution to 
the one-dimensional problem. 

In the present two-dimensional problem, we intend 
to make use of the factorization of 

A[(ki + k~)!l == 1 - cK((k~ + k~)!) (3.1) 

into a product of four functions: 

A = H 1H zH 3H 4 , (3.2) 

where, as we shall see, the Hi have the following 
regions of analyticity: 

H1:{Im kl ~ 0, 1m k2 ~ O} UTA' 

H2:{lm kl ~ 0, 1m 1.2 ~ O} uTA' 

H3:{Imkl ~ 0, Imk2 ~ O} UTA' 

H4:{Im 1.1 ~ 0, 1m k2 ~ O} UTA' 

where T A is the tube 

TA = {(Im 1(1)2 + (1m k2)2 < x~}, 
and Xo satisfies 

(3.3a) 

(3.3b) 

1 - (c/1-(o) tanh-1 Xo = O. (3.4) 

The conditions for the existence of such a factor­
ization and the method of calculation are given in a 
theorem of Bochner.4 Let /(k l , k 2) be analytic and of 
bounded L2 norm in a tube T, fJ, ~ 1m k j ~ (Xi' The 
L2 norm of/is defined by 

IIfl12 = (f~~ L+:lf(171 + if;1' 172 + i~2W dr;l dr;2{ 

(3.5) 

where the integration is confined to the tube T. 
According to Bochner, this function is uniquely 
decomposable (up to additive constants) into a sum 
of four functions, / = /1 + /2 + /a + /4' each of 
which is analytic and bounded in respective radial 
tubular domains: 

11: {1m kl > fJI, 1m k2 > fJ2}' 

12: {1m kl < (Xl, 1m k2 > fJ2}' 

13:{Im k1 < (Xl, 1m k2 < OC2}' 

.k {Jm kl > fJI' 1m k2 < (X2}' 

The /; may be given in terms of Cauchy integrals. 
Letting [/lai ± denote the following integrals of I, 

where the contours r;= are depicted in Fig. 2, we find 
that the.li are given by 

11 = [/]<1,+<12+' 

12 = [f]<1,-<12+' 

/a = [/]<1,-<12-' 

h = [f]<1,+G2-' 

(3.Sa) 

(3.8b) 

(3.8c) 

(3.Sd) 

To obtain the product decomposition of A = 
1 - c/{, one must first take the logarithm and deter­
mine the additive decomposition of In (A). The desired 
result is then obtained by exponentiation. For con­
venience, however, we shall reduce the decomposition 
problem for A to one that has already been considered 
by Kraut in his analysis of an elastic wave propagation 
problem. 7 

1m k. 
J 

i:t. 
J 

k. plane 
J 

---------+--------- Re k. 
J 

- ------1----+ ~+ 'j 
i3. 

J 

FIG. 2. Integration paths in the tubular domain T. 
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We have the following integral representation of 
A(k): 

A(k) = 1 - C k
2 + u~ ex [2k2 roo OCI/t) dt], 

x~ k2 + 1 P 1T)1 (t2 + k2)t 

k2 = k~ + k~, (3.9) 
where 0 is given by 

One can now verify without much difficulty that the 
Hi, as given above, are analytic in their respective 
domains as per (3.3). 

4. SUBTRACTION OF THE ASYMPTOTIC 
SOLUTION 

With the definition (3.1), Eq. (2.7) becomes 

e(O') = tan-1 (C1TO'/2A.(O'», e(o) = 0, (3.10) A(k
1

, k2)<I>l (k
1

, k
2

) = -<I>2(k
l

, k
2

) - <1>3(k
l

, k
2

) 

A(O') = 1 - cO'tanh-1 0'. (3.lt) - <1>4(k1, k2) + I/(al - ik1)(a2 - ik2), (4.1) 

This is a simple variation of a representation well 
known in one-dimensional transport theory.8 A more 
convenient expression is given by 

A(k) = ex (_ ~ roo e(1/t)t dt _ 2fl ~). 
P 1T )1 (t2 + k 2

) "0 t2 + k 2 

(3.12) 

Thus, to achieve the product decomposition of A, we 
see by the above integral representation that we need 
only additively decompose the function 

V(k1 , k2 ; t) = 1(/t2 + ki + k~). (3.13) 

Since t is real and ~ Xo, V is analytic in the tube 
TA [Eq. (3.3b)]. It is an easy matter to verify that V 
also has bounded L2 norm in T A' By a simple modi­
fication of a calculation by Kraut,7 we obtain the 
following decomposition: 

1/(t2 + k~ + k~) = VI(kl , k2 ; t) + V2(k1 , k 2 ; t) 

+ V3(k1 , k2 ; t) + V4(k1 , k2 ; I), (3.14) 
with 

1 
VI(kl' k2 ; t) = 2 2 2 

t + ki + k2 

X [~ _ ki 1 In (k2 + (k~ + t2)~) 
4 21T(k~ + t2)2 it 

_ kz In (ki + (k~ + t2)k)] " 
21T(ki + (2)k it (3.15) 

V2(kl , k 2 ; t) = VI ( -k1' k2 ; t), (3.16) 

V~(kl' k2 ; t) = VtC-kl' -k2; t), (3.17) 

Vlk l , k2 ; t) = VI(kl , -k2; t). (3.18) 

In the above, the principle branch of the logarithm 
is to be taken, and we will arbitrarily choose the 
branches of the radicals so that (k;)k = +k;. Thus, 
the Hi, which were defined in the factorization of A(k) 
[Eq. (3.2)], are given explicitly by 

H;(k1 , k2) = exp (- ~ f" eC)V;(kl , kz; t)t dt 

- 2 i:V;(kI , k2 ; t)t dt). (3.l9) 

where, here and in the following, A(kl' k 2) = 
A[(ki + ki)k]. Using a Bochner decomposition on the 
term A <1>1,9 we can derive a set of integral equations 
relating <1>1, <1>2, q)3 , and <1>4' The decomposition yields 

where the operations [ ]i' i = 1, ... , 4, are defined 
by Eqs. (3.6)-(3.8), with the corresponding contours 
in Fig 2 confined to the tube T (J)' The uniqueness of 
this decomposition allows us to equate terms on the 
rh~ IJf (4.2) to corresponding terms on the rhs of (4.1) 
as follows. 

[A<1>lh = I/Cal - ikl)(aZ - ik2), (4.3) 

[A<1>dj = -<1>j, j = 2, 3, 4. (4.4) 

If in (4.3) [with Re (a1 , a2) > 0] the integration 
contours are taken to be the real axes and kl and kz 
approach these contours (from above), we obtain a 
singular integral equation for <1>1(k1 , kz) on the real 
axes: 

+ ~ f+oo A(Zl' k 2)<1>1(Zl, k 2) dZ l 

41Tt -00 Zl - kJ 

+ _1_ j~+'" A(kl' Z2)<1>I(kl , Z2) dZ 2 

41Ti -0;; Z2 - k2 

__ 1_ f+oof+oo A(Zl' Z2)<1>J(Zl, Z2) dZ l dZ2 

41T2 -00 -00 (ZI - k l )(Z2 - k 2) 

1 
(4.5) =-------

(a l - ik1)(a Z - ik2) , 

where the integrals are computed as principal values. 
If one could solve the above equation for <1>1, then 
<1>2' <1>3' and <1>4 would follow from (4.4). 

In a study of diffraction of electromagnetic waves 
from a quarter space, Kraut and Lehman3 encounter 
similar mathematical problems. They derive an 
equation analogous to (4.5) and prove that the solu­
tion may be obtained by iteration if a certain param­
eter is less than unity. If this parameter is close to 1, 
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the calculated convergence rate is slow. We could do 
the same here for c < 1. Instead, we will derive an 
iterative scheme which takes advantage of the analytic­
ity of the various functions and which yields a 
convergence rate which is relatively fast regardless of 
the value of c. The transform of the asymptotic flux 
distribution (away from the corner) is the zeroth­
order term in this scheme. Higher-order terms produce 
a significant correction only very near the corner. 

To begin the analysis of (4.1), we redefine the prob­
lem in terms of a new set of unknowns <D i , i = 
1, ... , 4, which represent differences between the <I> i 
and the transforms of the asymptotic distributions. 
The asymptotic distributions are derived in Appendix 
A by assuming, for example, that if Xz is large and 
positive, then, under certain conditions on (aI' az), 
the purely absorbing quarter space (xz < 0, Xl > 0) 
can be replaced by a medium which has the same 
properties as quarter space (Q) occupying the positive 
quadrant. The result is a one-dimensional Wiener­
Hopf equation which is easily solved in both cases 
(large Xl , large X2)' 

Referring to (A 7) and (AI2), we see that <1>1, given 
by 

<l>1(k1, k2) = l/[(al - ik1)(a2 - ikz)HI(k1 , k2) 

X H2( -ial, k2)H3( -ial, -ia2) 

X H4(kl , -ia2)] + <DI(kl , k l ), (4.6) 

will produce the desired asymptotic behavior for large 
Xl or X2 with <DI analytic in the upper (k1' k2) planes 
and yielding the correction near the comer. Similarly, 
to get correct asymptotic behavior in the quarter 
planes adjacent to the position quadrant, we choose to 
define <D2 and <b 4 as follows: 

Note that in (4.7) we have substituted the ratio 
H'J,(k1' k2)/ H2(:- ial' k2) in preference to the choice 
indicated by (AB), namely, H'J,(kl' -ia2)/H2( -ia1 , 

-ia2), and have made a similar substitution in (4.8). 

The reason for these changes as well as the definition 
of <1>3, 

1 1 
<l>a(kl,k2) = - ------

(a l - ikl ) (az - ik2) 

is given below. 
The problem, now defined in terms of hatted 

variables, is 

A(kl , k2)<DI (kl , k2) = - <D2(k1, k2) - <ba(k1, k2) 
- <b4(k1 , k2) + S(kl' k2), (4.10) 

where (4.6)-(4.9) were used in (4.1) and the source 
term S is given by 

A 1 
S(k1 , k2) = ----------­

(a 1 - ikl )( Q 2 - ik2)H 3( - ia1 , - ia2) 

( 
H2(k1 • k2)H3(kl' k2)Hik1 , k2) X -~~~~=-~~~~~ 

H2(-ia l , k2)Hikl , - ia2) 

+ H2(kl • k2)H3(k1, - ia2) 

Hz(-ia 1 , k z) 

Ha(-ial, k2)Ha(k l , -ia2) 

Ha(kl , k2) 

+ . Hikl' k2)HaC - ia1 , k2») 
H4(k1 , -ia2) 

(4.11) 

Our motivation for making the choice of <b2 , <Da , and 
<D4 , as defined by (4.7)-(4.9), becomes clearer by 
noting that the residues of S vanish identically at 
k1 = -ia1 and at k2 = -ia2' Also, because 

= 1 + O(1n ki/ki), j = 1,2, i = 1, ... ,4, 

(4.12) 
we find that 

lim S(kl' k2) = O(1n kik~), j = 1,2. (4.13) 
kr" oo 

This latter fact will be useful in our derivation of a 
convergent iterative solution. 

S. SOLUTION FOR ~l IN TERMS OF ~2 AND <{), 

We now demonstrate that assuming that <D2 and <b4 
are known leads directly to the solution for <b1' Later 
we shaIl determine <D2 and <D,. For this purpose and 
many of the remaining calculations we require the 
following factorization of A in the variable k 2 : 

A(k1 • k2) = (x~ + k~ + k~)E(k2' k1)E( - k2' k1), 

(5.1) 
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where 

The above result follows most simply from (3.12). 
The function E(k2, kl ) is analytic in the upper k2 
plane while E( -k2 , kl ) is analytic in the lower k2 

plane. 
With the substitution (5.1), Eq. (4.10) reads 

(u~ + k~ + k~)E( k2, k1)E( - k2, k1)<P 1 

= -<P2 - <P8 - <P4 + S. (5.3) 

Before proceeding further, we need to derive some 
useful relations between the <Pi at infinity. Multiplying 
(5.3) by kl and letting kl ...... 00, we find that 

vI(k2) = -v2(k2) - va(k2) - v4(k2), (5.4) 

where 

V;(k2) = lim ik1<P;(kl , k2), j = 1,2,3,4, (5.5) 
kl-+ 00 

and where we have used (4.13) and the fact that 
A ...... 1 when either kl or k2 -+ 00. Because VI and V2 
are analytic in the upper half-plane, because Va and 
V4 are analytic in the lower half-plane, and because all 
the Vi vanish at infinity, we must have that 

vI(k2) + v2(k2) = 0, 

va(k2) + v4(k2) = o. 
(5.6) 

(5.7) 

Similarly, if we define the limits 

14k1) = lim ik2<P,(kl , k2), j = 1,2,3,4, (5.8) 
k2 -+ co 

then we find 
I-'I(k1) + 1-'4(k1) = 0, (5.9) 

1-'2(k1) + l-'a(k1) = O. (5.10) 

Now, dividing Eq. (5.3) by E(-k2,k1) and per­
forming the operation [ ]a. + [see Eqs. (3.6)-(3.8)] on 
the result yields 

(u~ + k~ + k~)E(k2' k1)cP1 + 1-'4(k1) 

= [ S - <P2 ] (5.11) 
E( -k2 , k1) a/ 

where the operations [ h,+ correspond to the contours 
i";=, as shown in Fig. 3 and where we have used the 
facts that (1) the lhs of (5.11) is analytic in the upper 
k2 plane and is square-integrable in TtlJ [because of 
(5.9)] and (2) the same is true of (cPa + $4)/E( -k2 , k 1) 

except that it is analytic in the lower k2 plane. 

(5.2) 

Now dividing (5.11) by (u~ + ki + kDE(k2 , k1) 

gives, for <PI , 
• 1 

<l>1(k1, k2) = 2 2 2 
(Xo + kl + k2)E(k2 , k1) 

Thus <PI is expressed in terms of known functions and 
the unknown functions $2 and 1-'4' 

A similar expression may be developed in terms of 
<P 4 and V 2 by using the factorization of A in k 1 : 

A(k1 , k2) = (u~ + ki + ki)E(k1 , k2)E( -k1, k2)' 

(5.13) 

We find, analogous to (5.12), that <PI may be repre­
sented as 

Of course, at this point both <P2 and <P4 are un­
known. The above expressions for <PI were simply 
derived by a modified one-dimensional Wiener-Hopf 
analysis, the modification consisting of factoring out 
the zeros of A and using the Wiener-Hopf factor­
ization of the remainder. In the next section, however, 
a coupled pair of Fredholm equations for <P2 and <P4 
will be derived which will be shown to be solvable by 
iteration. Once this is done, we will return to (5.12) or 
(5.14) to obtain <Pl' 

r~ 
1 

1m k. 
1 

k. plane 
1 

_______ +_.:::br:.::a~nc::.:.h:..!p~O:.:.:in.:.::.t::.s __ Re k. 

I 1 

r: 
1 

FIG. 3. The contours fl. 
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6. COUPLED FREDHOLM EQUATIONS 
FOR tl>2 AND tl>4 

We return to (5.13) and divide by E( -kl' k2)' This 
time, however, we perform the operation [ ]"1- and 
find 

[ 
S - <1>4 ] <1>2 + <1>3 o = - + 1'2 - 1'4' (6.1) 

E(-kl' k2) 0'1- E(-kl' k 2) 

Now we multiply the above equation by E( -kl , k 2) 

and perform the operation [ ]" +. This filters out the 
• 2 

term <1>3' which is analytic in the lower k2 plane, 
giving 

Another equation relating <1>2 and <1>4 may be 
derived by dividing by E( -k2' k l ) in (5.3) and 
performing the operation [ ]"2-' We find 

(6.3) 

Multiplying (6.3) by E( -k2 ,kl ) and performing 
[ ]"1+ gives the second desired equation: 

The contours rt (corresponding to the operations 
[ ],,+) are as shown in Fig. 2 and, for the moment, are 
confined to the tube TA . This is sufficient to ensure 
analyticity of S(Zl' Z2) if (ial , ia2) ETA n {1m (ial ), 
1m (ia2) ;;::: O}. 

If (6.2) is evaluated for kl E rt and k2 E I'; to 
obtain <l>2(k1 , k2) and (6.4) is evaluated for kl E I'l 
and k2 E rt to obtain <l>4(kl , k2), then the two 
equations represent a pair of coupled Fredholm 
equations for <1>2 and <1>4' The quantities l/(zi - k i) 
are clearly bounded. In contemplating a Neumann 
series solution to (6.2) and (6.4), it would be advan­
tageous to make l/(zi - k i ) as small as possible by 
lowering the rt contours as far as possible into the 
lower half-planes. Guided by our experience in one­
dimensional problems, we might hope to achieve 
deformation of the contours rt to rt shown in Fig. 
3, which possibly would have the additional advantage 

(a) "2 = ia. + /> 

( 1 ,;; a. ,;; "'. 6 ~ 00) 
"1 plane 

----------~~~~-----------------Rez1 

-~ 

1m z1 

(b)Z2=ia.-6 

( 1 "a. ""'. 6 ~ 0) Zl plane 

+~ 
Re z1 

FIG. 4. Possible choice of branch cuts of E(-ZI' Z2)' 

of producing a real-valued kernel. However, this 
deformation is not possible for the following reason. 
In (6.2), for example, if the integration vari~ble Z2 
approaches the line (-ioo, -i), then the branch point 
of E( -Zl' Z2) in the Zl plane approaches the Ireal Zl 
axis at a point depending on the value of Z2 [refer to 
the representation of E( -Zl' Z2) given by (5.2)]. This 
is shown in Fig. 4. Thus it would not be possible to 
deform rt and rt, as shown in Fig. 3, because the 
contours I'l and I'; could not be preserved. 

An iterative scheme which avoids this difficulty and 
leads to real-valued kernels will now be derived. 
First, we note that because 

it follows that (6.2) may be rewritten as 

<l>2(k1 , k2) 

= [E( -k1' k2)[ <1>4 ] ] + R 2(k1 , k 2), 

E(-kl,k2) a1+ ".+ 
(6.6) 
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and, similarly, (6.4) may be rewritten as 

<l>ikt. k2) 

= [E(-k2 ,k1)[ <1>2 ] ] +R4(k1 ,k2), 

E( - k2 , kl 0'.+ "1+ 

(6.7) 

where 

R;(k1, k 2) = Tj (k1, k 2) + Uj (k1, k 2), j = 2, 4, 

(6.8) 

and 

T2(k1 , k 2) 

( 
1 )2 r dz2E( - k1 , Z2) r dz1S(ZI, Z2) 

= 27Ti Jr2+ (Z2 - k2) Jr1- E( -ZI, Z2)(ZI - k1) , 

(6.9) 

The contours in (6.6) and (6.7) may now be de­
formed into the lower half-planes. From a careful 
inspection of the functions R 2 , R4 , E( -k2 , k 1 ), and 
E( -k1 , k 2), we find that <1>2 and $4 have branch cuts 
as shown in Fig. 5. Accordingly, it is useful to define 
discontinuities of various functions as follows: 

k1 , ZI E (-ioo, -iO): 

$2+(ZI, Z2) - <l>2_(ZI, Z2) 

== {"P2(ZI' Z2), 
X2(ZI, Z2), 

~+( -k1 , Z2) E_( -k1 , Z2) 

E+(-Z1, Z2) £_(-ZI; Z2) 

Z2 E (-i, -h"o) 
Z2 E (-ioo, -i), 

(6.13) 

== G(k1,Z1,Z2), Z2E(-ioo, -i), (6.14) 

k2 , Z2 E (-ioo, -iO): 

<1>; (Z1, Z2) - <1>4(Z1, Z2) == {1J!4(Z1, Z2), 
X4(Z1, Z2), 

£+(-k2, Z1) £-(-k2, Z1) 

£+(-Z2' Z1) E-(-Z2, Z1) 

Z1E(-i, -i"o) 

Z1 E( -ioo, -i)' 

( 6.15) 

== G(k2,Z2,Z1), ZlE(-ioo, -i), (6.16) 

• 
Analyticity of t 2 

kl e (-i"".-iO) 
k

Z 
plane 

----------------+----------------RekZ 

" Analyticity of • 5 

k
Z 

e (-i"".-iO) 

-iK 
o 

-i 

kl plane 

---------------+------------- Re kl 

-i 

FIG. 5. Branch cuts of ell. and ell •. 

where the superscript (±) denotes a limit in the kl 
plane and the subscript (±) denotes a limit in the 
k2 plane (see Fig. 5). 

Collapsing the rt about the negative imaginary 
axes,10 we can rewrite (6.6) and (6.7) as 

(6.17) 

<l>ik1 , k2) = -, ( 1 )21- i 
dZ l 

27Ti -ioo Zl - kl 

X (J~i dz 2G(k2 , Z2, z1)xlz1' Z2) 

-'00 Z2 - k2 

+ J-i"o dz2G(k2, Z2, zl)"Plzl, Z2») + R (k k) 
. k 4 1, 2' 

-. Z2 - 2 

(6.18) 

In Appendix B, integral representations for T2 and 
T4, the known parts of R2 and R4 , are derived by using 
formulas analogous to (6.5) in (6.9) and (6.10) with 
contour integration. 
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Thus we need only determine "P2, X2' 1'2' "P4' X4' 
and 1t4 to obtain <1>2 and <1>4 from (6.17) and (6.18), 
respectively. The discontinuities of <1>2 and <1>4 as 
calculated by just these equations provide four of the 
equations for the above functions. Computing the 
discontinuity of (6.17) across the cut (- i, - ixo) in 
the k2 plane, we find that tp2(kl , k 2) is simply given as 
the discontinuity of R2 : 

tp2(kl , k2) = R2+(kl , k 2) - R2_(kl' k 2), 

As a final step, we relate the unknown functions '1'2 

and 1t4 to the functions tp2, X2 and tp4' X4 as follows. As 
in the development of (6.2), but using the factorization 
A = (HlH4)(H2Ha), we find that 

<1>2(kl , k2) 

= H2Ha -- + H2Ha -- • [ [ <1>4 ] ] [ [S J ] 
H2Ha ;1,+ ;;2+ H2H "'- 0'2+ 

(6.27) 

kl E (-ioo, -iO), k2 E (-i, -ixo)· (6.19) Multiplying (6.27) by ik2 and letting k2 ~ 00, we have 

Similarly, from (6.l8) we compute tpikl' k 2) to be 
given by 

tpikl' k2) = Rt(kl , k2) - Ri(kl , k2), 

k1E(-i,-ixo), k2E(-ioo,-iO). (6.20) 

Next, computing the discontinuities of (6.17) and 
(6.18) across (-ioo, -i) in the k1 and k2 planes, 
respectively, yields two coupled Fredholm equations 
for X2 and X4: 

1 f- i 
dz1G(k1, Zl' k2)xizl' k2) 

X2(kl , k2) = 2---: . k 
71'1 -">0 Zl - 1 

+ [R2+(kl' k2) - R2_(kl' k2»), (6.21) 

1 f- i dz2G(k2, Z2, kl)X2(kl , Z2) 
Xikl , k2) = 2--: . k 71'1 -,00 Z2 - 2 

+ [Rt(kl , k2) - Ri(kl , k2»)' (6.22) 

The kernels are real and are continuous because 
G(ki' Z;, k i ) is analytic in k i and vanishes at k i = Zi' 

We define the linear operators L2 and L4 , 

L
2
(y)(k

1
, k

2
) = ~ f- i 

dZl G(kl' Zl' k2)y(Zl, k2) , 

271'1 -;00 Zl - kl 
(6.23) 

and write an iterative scheme for solving (6.21) and 
(6.22) as follows: 

X~n) = L 2(xln
» + [R2+ - R 2-J, (6.25) 

x~n) = Lix~n-l» + [Rt - RiJ, 

X~o) == 0, n = 1,2, .. '. (6.26) 

To justify this procedure, we must demonstrate that 
the norm of L4L2 satisfies II L4L 2 II < 1 in some Banach 
space. In Appendix C, we show indeed that this is true 
for all 0 < c <: 2 and that the convergence is uniform. 

1'2(k
2

) = _1_' (-i"o dZ2 

471'2 )-iOO Z2 - k2 

X ]-i"O dzl[<1>t(Zl' Z2) - <i>i(Zl, Z2») 

-ioo Ha(Zl' Z2) 

( 1 1) (6.28) 
X H 2+(Zl' Z2) - H 2_(Zl, Z2) , 

where <1>t - <1>4 is related to "P4 and X4 by (6.15). 
Similarly, we find that 1t4(kl) is given by 

1t4(k
l

) = _i_]-;"" dZ l 

471'2 -ioo Zl - kl 

X f-;"" dz2[<1>2+(Zl , Z2) - <1>2_(Zl, Z2») 

-ico Ha(Zl' Z2) 

X ( + 1 _ 1 ), 
H4 (Zl' Z2) H"i(Zl, Z2) 

(6.29) 

where <1>2+ - <1>2_ is related to tp2 and X2 by (6.13). 
Equations (6.19)-(6.22) and (6.28) and (6.29) 

comprise the required set of six equations for the six 
unknowns tp2' X2, 1'2, tp4' X4, and 1t4' 

7. CONCLUSION 

Assuming an inhomogeneous term exp (-alxl -
a2x2) in the transport equation (2.2), we find that the 
double Fourier transform of the flux in the quarter 
space, $l(kl , k 2), is given by (4.6) in terms of the 
transform of the flux away from the corner whose 
properties are discussed in Appendix A, and a correc­
tion <1>1 (kl ,k2)' The function<1>l (kl ,k2) is given in 
terms of <1>2(k1 , k2) or <1>4(kl ,k2) by (5.12) or (5.14), 
respectively. The functions <1>2 and <1>4 have singulari­
ties only on the imaginary axes and are given by (6.17) 
and (6.18) in terms of functions tpi(Zl, Z2), Xi(Zl , Z2), 
i = 2,4, 1'2(k2), and 1t4(k1). The tpi are given by (6.19) 
and (6.21), while the Xi satisfy Fredholm equations 
(6.21) and (6.22). Uniform convergence to the solution 
of these equations may be obtained by iteration for 

values of c: 0 ~ c ~ 2. The functions 1'2 and 1t4 are 
related to the 'I/'i and Xi by (6.28) and (6.29). 



                                                                                                                                    

TWO-DIMENSIONAL QUARTER SPACE PROBLEMS 763 

A more direct approach to the solution appears to 
be possible by obtaining Fredholm equations for <1>2 
and <1>4 (instead of <1>2 and <1>4) starting from (4.1) and 
bypassing the subtraction of the asymptotic terms. 
There are two objections to this approach. First, the 
asymptotic behavior of the flux does not appear in a 
natural, relatively simple way. Second, the properties 
of the resultant Fredholm equations for <1>2 and <1>4 
appear to be very sensitive to the value of "0 (and 
hence the value of c) and to the location of the points 
ial and iaz. Convergence is an open question. In 
particular, residues at the poles kl = - ial and k2 = 
- iaz are unknown and must be carried along during 
the iteration. 

APPENDIX A: ASYMPTOTIC SOLUTIONS 

Far away from the boundary Xl = 0, the spatial 
distribution of the density CP(Xl' X\l) in Xl will tend to 
the source distribution exp (-alx) if Re (al) and 
Re (all) are small enough. Later in this appendix we 
give specific upper bounds which must be satisfied. 
Thus, 

cp(Xl> X2) -- exp (-alXl)OC2(XIl), Xl -- + 00. (AI) 

To determine the distribution in X2 for large Xl given 
by OCz, we substitute the rhs above into the transport 
equation (2.4) and extend the integration on Xl to 
(-00, +(0): 

exp ( -alxl)oc2(XIl) 

= cfoo dx~ foodx~K(lx - x'l) exp (-alx~)oc2(X;) 
-<Xl Jo 

+ {exp (-a1x1 - aIlX\l), X 2 ~ 0 
0, X

Il 
< O' (A2) 

Equation (A2) represents a one-dimensional Wiener­
Hopf problem in XIl • Fourier transformation in X2 of 
the above equation yields 

A[(k~ - a~)I]At(k2) = -A;(k2) + 1/(a2 - ik2), 

(A3) 

where A is defined in (3.1) and Ai' is the transform of 
OCz for Xli ~ 0: 

At(kll) = flO exp (ik2x2)OCZ(X\l) dX2, (A4) 

A;(kll) = f~oo exp (ik2xll)OC2(X2) dXIl' (AS) 

The appropriate factorization of A [(ki - aDI] is given 
by 

A[(k~ - a~)I] = [HI(-ja1 • kz)Hz(-ial> k2)] 

x [Ha(-ial , kll)H4(-ia1 , k\l)]. (A6) 

where the first factor in square brackets above is 
analytic and nonzero in the upper k2 plane while the 
same is true for the second factor in the lower k2 
plane. 

Using the factorization (A6), we easily solve (A3) 
to give 

At(k2} = [(a2 - ik2)H1(-ia1 , kll)Hz(-ial , kll) 

x Hl-ia1 , -iall)Hi-ial, -iall}rl (A7) 
and 

A;(k
2

) = 1_ 
a2 - ikll 

x (1 - HaC-ial • k2)Hi-ia l • k2) ) (A8) 
Ha( -;al • -;a2)H4( -ia}, -iall) . 

To interpret the above results without going into 
any great detail. we see from (5.13) and (5.2) that 

Thus HlH2 for kl = -ia} has a zero at kll = 
-i(,,: - ai)1 and a branch point at k2 = -i(1 - aDI 
with a corresponding branch cut in the lower half­
plane. (The apparent pole at the branch point is 
canceled by the exponential term which goes to zero 
at that point.) Fourier inversion of At will give by 
contour integration two discrete exponential terms 
for OC2(X2) , X2 > O. plus an integral over the branch 
cut as follows: 

= exp (-a 1X 1)( R} exp (-a2x2) 

+ RIl exp [-(,,~ - a~)lx2] 

+ roo 2lexP (-kX2)D(k)dk), (AI0) JU-a, ) 

where residues Rt and R2 and the function D(k) 
associated with the discontinuity across the branch 
cut are easily obtained by using (A 7) in (A9). For 
X 2 < 0, OC2(XZ) will consist only of an integral term 
over the branch cut of H3( -ia1• k 2)H4( -ia1• k 2) in 
the upper half k2 plane. We have thus determined the 
behavior of cp(Xt, x2) for large positive Xl for all Xi' 
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Similarly, we expect for large positive X2 that 

If Fourier transforms of 01:1 are defined as follows: 

Ai(k1) = L') exp (iklXl)0I:1(Xl) dxl • 

A1(kl ) = roo exp (ik1xl)OI:l(Xl) dx l , 

then an analysis similar to that above for 01:2 gives 

Ai(k1) = [Cal - ikl)H1(kl , -ia2)Hikl, -iaz) 

X H2( -ia l , -ia2)Ha( -ial, -ia2)rl, (A12) 

and 

A1(k
1

) _ 1 
al - ikl 

X (1 _ H2(kl , -iaz)Ha(k1 , -iaz) ). 

H 2( - ial, - ia2)H aC - ial> - iaz) 
(A13) 

The large X 2 behavior of q;(Xl , x2) for Xl > 0 will have 
the same form as given in (AlO), with aI' a2 , Xl, and 
X 2 replaced by a2, aI' X 2 , and Xl' respectively. 

An earlier statement was made that Re (a l ) and 
Re (a2) must be small enough if (AI) and (All) are to 
be valid expansions. From (AlO) and the equivalent 
expression for large X z we see that Rc (al) and Re (az) 
must satisfy 

Re (a l ) < Re (u~ - a~)~-
and 

or, if al and az are real, 

ai + a~ < u~. 
APPENDIX B: THE FUNCTIONS Tz(k l , k 2) 

AND TikI. k z) 

The function T2 is given by (6.9) or, equivalently, by 

where S is given by (4.11). For the first two terms 
within the brackets in (4.11), we apply the operations 
shown on the rhs of (Bl), and for the second pair of 
terms we use, for any suitably behaved B(kl' k 2), 

After subsequent manipulations we find 

H (-ia , -ia )J:(k k) = Ha(kl> -iaz) 
3 1 z 2 1, Z ( _ °k)( -'k ) a l 1 1 az I z 

( 
H2(kl. k2) H2(kl , -iaz) ) 

x H2(-ia l , k2) - H 2(-ia1 • - ia2) 

1 

21Ti(a l - ikl)Hi - ia l • - ia2) 

x i-i dzzG(kl • - ial , z2)Hi.- ia l , zz) 

--ioo (zz - ,k2)(aZ - lZ2) 

+_ 2 1 i-IX. dz 

21Ti -ioo (Zz - k 2)(az - iz2) 

x (E+(-k1 ,Z2) _ E_(-k1 ,Z2») 
Hz+(-ia l • Z2) H2_(-ia1 , zz) 

1 i-i dz2H a( - ia1 , Z2) 

41T2 -ioo (zz - k2)(a Z - iz2) 

I-i><o dz I G(k1 , Zl' zz) 

X -ioo (Zl - kl)(a1 - iz1) 

(
' Ht(ZI' zz) H;:(Zl' zz) ) x - . 
Ht(Zl' -ia2) H;(Zl, -i(1z), 

Similarly, we find that T4(k1 , k 2) is given by 

H(-ia -ia)T(k k)= Ha(-ia 1 ,k2 ) 
3 1 , Z 4 1, 2 ( _ 'k)( -'k) a 1 I 1 az I z 

( 
Hik1 , k2) Hl-ia] , k2 ) ) 

x Hikl' - ia2) - H4(-ia 1 , -ia2) 

1 1 

21Ti(az - ik2)H2(-ia1, -ia2) 

xI-i
dZ1G(k2, -iaZ,zl)Hz(~l' -ia2) 

-;CYJ (Zl - kl)(a 1 - lZl) 

+ _1 i-;><· dZ l 

21Ti -ioo (Zl - k1)(a1 - iz1) 

x ( E+( - k2 ,Zl) _ E-( - k2, Zl) ) 

Ht(zl> - ia 2) H;(ZI , - iaz) 

__ 1_ r-i dz1H3(Zl, -ia2) 

41T2 "-ioo (Zl - k1)(a 1 - iz1) 

I -ixO dZ2G(k2, Z2, Zt) 

X -ioo (Z2 - k2)(az - iz2) 

( 
H2+(Zl' Z2) H2_(Zl' Z2) ) x - , 

H2+( -ia1 , Z2) H2_( -ia 1 , Z2)' 

APPENDIX C: CONVERGENCE OF THE 
ITERATION SCHEME 

(B3) 

(B4) 

In this appendix we will show that the Fredholm 
equations derived in Sec, 6 may be solved by iteration 
and that the convergence is uniform. The integral 
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operator in question is L2L4 given by (6.23) and (6.24). 
Since the Fredholm kernels belonging to L2 and L4 
will be seen to be positive, we can define the norm of 
the operator L2L4 as 

I 
B( k} , k2)J-i 

IIL2L411 = max 2 dz} 
k"k.E(-ioo,-i) 41T -ioo 

X r- i 
dz2G(k} , z}, k2)G(k2' Z2, Z}) I, (el) 

LiOO (Z1 - k})(Z2 - k2)B(z} , Z2) 

where B(k1 , k 2) is a positive, bounded function to be 
chosen later. The corresponding norm on the function 
space is 

IlfII = max IB(k} , k2)f(k1, k2)1· (e2) 
kt,k2E{-ict::l ,-i) 

To prove uniform convergence, we must show that 
IIL2L411 < 1. For convenience we switch to positive 
real variables 

ikj -+ 'Yjj, iZj -+ 'j' j = 1, 2 

and consider the quantity - O/21T)G(k2, Z2, Z1)/ 
(Z2 - k2)' Using (6.16) and (5.2), we find that 

_ ~ G(k2, Z2, z}) = _1_ G( -i'Yj2' -i'2, -i'1) 

The quantities "Po, "PI, and 'YJ2 - '2 always have the 
same sign. Furthermore, 

and, using (jO/t) =s; 1T, we obtain 

= l"Pol· (e9) 

Thus the left-hand side of (e3) is positive, real, and 
bounded by 

1 G( - i'Yj2, - i'2, - i'1) DoDl D2 sin eo -- <--
21Ti '2 - 'YJ2 - 1T 'Yj2 - '2 

(eIO) 
1T 

where 

(ell) 

B(Zl, Z2) = B( - i'1, - i'2) 

= (Y2 ,2 _ 1) ex [.! f~l (j(l/t)t dt 
<'1 + 2 P y2 + ),2 2 

1T 1 <,} <'2 - t 

1 roo e(l/t)t dt ( I )] 
+ :; J~l (t 2 

- mi '2 + (t 2 
_ ,~)i ' 

(e12) 

consistent with the behavior of X2 and X4 at infinity. 
Substituting (e12) and (elO) into (el) and using 
carefully selected inequalities which are too numerous 
to repeat here, we find that the norm of L2L4 is 
bounded by 

'IL L II - 1 exp (K)f'" ('Yji - 1)1 d'l I 2 4 - max 2 2 2 
~1'~2E(1,<Xl) 1T 1 '1 + 'Yj2 - I 

x (<Xl ai - 1)1 d'2j < 1 ex (K) (e13) J1 'i + ,~ - 1 - 4; P , 
where 

K = max I.! (<Xl e(1/t)t dt 
AE(l,oo) 1T J} (t2 

- 1)1[1 + (t 2 - 1)1] 

(
I roo e(l/t)t dt 

- ; J1 (t2 - 1)t[). + (t2 - 1)1] 

_ 1. rA 
(j(l/t)t dt )1. (e14) 

1T J1 ,12 + I - t2 

Finally, we obtain the following interesting result 
for 0 =s; c ,z 2. In this case one can show that the 
term in braces above is positive, so that 

K < ~ (00 (j(l/t)t dt = In (_1_) 
- 1T J1 (t 2 

- l)t[l + (t 2 - 1)1] E(i, i) , 

(C15) 



                                                                                                                                    

766 A. LEONARD 

where E(k2' k!) is defined in (5.2). Thus, 

I/L2L41/ ~ 1/4E(i, i). (CI6) 

• Part of this research was supported by a National Science 
Foundation Grant. 

1 N. Wiener and E. Hopf, Sitzber. Preuss Acad. Wiss., 696 (1931). 
• See, e.g., B. Davison, Neutron Transport Theory (Oxford V.P., 

London, 1958). The result (CI6) should be compared'with analogous 
results in one-dimensional slab geometry.u 

Using the inequality (j(llt)t ~ 1T, valid also for 
o < c ~ 2, we find further that 

IIL2L411 ~ 1(J2 + 1)liV2~ 0.87. (CI7) 
4 J2 - I 

Due to the numerous inequalities employed to 
achieve this result, we suspect that the actual norm of 
L2L4 is significantly lower than the above upper bound. 

JOURNAL OF MATHEMATICAL PHYSICS 

3 E. A. Kraut and G. W. Lehman, J. Math. Phys. 10, 1340 
(1969). 

4 S. Bochner, Am. J. Math. 59, 732 (1937). 
6 J. Radlow, Intern. J. Eng. Sci. 2, 275 (1964). 
• See, e.g., A. Leonard and T. W. Mullikin, J. Math. & Phys. 

44, 327 (1965). 
7 E. A. Kraut, J. Math. Phys. 9, 1481 (1968). 
8 See, e.g., K. M. Case and P. F. Zweifel, Linear Transport 

Theory (Addison-Wesley, Reading, Mass., 1967). 
• The density tp(x1 , x.) is bounded along the edge of the quarter 

space so that 4>1 '" Ilk, for large k/, and hence A4>1 has a bounded 
L. norm in the tube T <1J. 

10 The contours at infinity give no contribution. See Ref. 9. 
11 See Ref. 6, p. 331. 
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A new cell model for classical particle systems is presented and analyzed. In this model the particles are 
confined to congruent, interconnected, cubic cells of volume w centered on the points of a cubic lattice 
with lattice spacing 1/1'. The particles interact via a 2-body potential of the form q(r) + w-1K(yr). The 
paper deals with the limiting form of this model in which the cells are very large but their separation is 
much larger. The free energy density is defined by 

a(p, T) == lim lim l1(p, T, y, w), 
co-co 1-+0 

where a(p, T, 1', w) is the free energy density at density p, temperature T, and arbitrary y and w. For a 
very general class of functions q and K, it is proved that a(p, T) is given by a variational principle. For a 
certain class of functions K (including K :s;; 0), a(p, T) is given by the Lebowitz-Penrose generalization of 
the van der Waals-Maxwell theory. For a different class of functions K the system has crystalline states. 
When K is chosen so that only particles in nearest-neighbor cells interact and K is isotropic, it is proved 
that the most general crystalline state of the system has a density distribution with two values p+ and p_ 
arranged in a checkerboard (sodium chloride) pattern. For the special case with K repulsive, K(O) = 0 
and q = 0, the system has a second-order melting transition from a crystalline to a fluid state, with no 
critical temperature. Various correlation functions are defined and evaluated. In the I-dimensional 
nearest-neighbor case, the results include exact versions of the Ornstein-Zernike theory for both fluid 
and crystalline states. Magnetic systems are also considered. Different special cases of the model yield 
precisely the Weiss theory of ferromagnetism and the Neel-van Vleck theory of antiferromagnetism. 

1. INTRODUCTION 
This paper deals with a new cell model for many­

body systems. The model is of a general type in that it 
applies to particle systems and magnetic spin systems, 
and allows a wide choice of interaction potentials. 
It is not a realistic model for these systems, but, 
nevertheless, it exhibits many of their properties and 
has the advantage of being very amenable to exact 
treatment. In particular, it has crystalline (or anti­
ferromagnetically ordered) states and a melting 
transition which can be studied in detail. 

The explanation of the crystalline state and the 
phenomenon of melting from the principles of statis­
tical mechanics is an outstanding unsolved problem 
of theoretical physics. Several simplified models have 
been studied, but even these are not very well under­
stood. The early theories are of the mean-field type, 
due mainly to Kirkwood and Monroe.! The Lennard­
Jones and Devonshire theory,2 and the model of this 
paper, are related to these. Recent workS has shown 
that these theories are derivable from the statistical 
mechanics of a model system. It has been shown' that 
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nevertheless, it exhibits many of their properties and 
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treatment. In particular, it has crystalline (or anti­
ferromagnetically ordered) states and a melting 
transition which can be studied in detail. 

The explanation of the crystalline state and the 
phenomenon of melting from the principles of statis­
tical mechanics is an outstanding unsolved problem 
of theoretical physics. Several simplified models have 
been studied, but even these are not very well under­
stood. The early theories are of the mean-field type, 
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paper, are related to these. Recent workS has shown 
that these theories are derivable from the statistical 
mechanics of a model system. It has been shown' that 
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this system does crystallize in a certain sense, but the 
form of the crystal structure and the nature of the 
melting transition (in particular, its order) are not 
known. Different approximate treatments give con­
flicting results.loS 

Another model is the gas of hard spheres or hard 
disks for which the computer experiments of Adler 
and Wainwright6 suggest the existence of a crystal 
state and a melting transition of the first order. How­
ever, there is no theoretical proof of this result. A 
similar model is the hard-square lattice gas,7 for which 
some accurate expansion techniques have been found 
by Gaunt and Fisher. These expansions indicate the 
existence of a second-order melting transition, but 
again this has not been proved. 

The need for models which, like the model of this 
paper, can be treated exactly is therefore apparent. 
The model may be useful as a "testing ground" for 
general formal theories of melting, such as the theory 
of "group invariance of states" and "broken symme­
tries," which has been formulated recently.s 

2. THE CELL MODEL 

In this section we define and discuss the details of 
the cell model. In this model the particles are confined 
to congruent, similarly oriented, v-dimensional cubes 
{w(y/y)}, called cells, of equal volume w, where w(x) 
is centered at a point x. The vector y can lie only on the 
points of a v-dimensional cubic lattice ZV with unit 
cell of side unity (ZV is the space of all v-tuples of 
integers). Hence the cells {w(y/y)} are centered at 
points of a cubic lattice with unit cell of side I/y (see 
Fig. 1). The particles can move freely from one cell to 
another. To make this physically possible, one can 
imagine very fine tubes of negligible volume connect­
ing the cells. Each particle interacts with other particles, 
both in the same cell and in other cells, via the 2-body 
potential 

v(r, y, w) == q(r) + w-1K(yr), (2.1) 

where q(r) is called the short-range or reference poten­
tial and w-1K(yr) is called the long-range potential. 

We shall consider the free energy density ii(p, T, 
y, w) (defined below) of a system of such particles 
with average density p and temperature T, and evalu­
ate its limit 

a(p, T) == lim lim ii(p, T, y, w). (2.2) 
c.o .... oo y .... O 

This limiting free energy density a(p, T) describes a 
system in which the distance I/y between the cells and 
the volume w of each cell are both very large. Since the 
'limit y ---+ ° is taken first, the separation of the cells 

FIG. 1. Illustration 
of the cell model. 1/r 

14----1!r --~ 

small 
connecting 

tubes 

is much larger than their dimensions, i.e., 

y-l» WI/v. (2.3) 

The range of the potential w-lK(yr) also becomes 
infinite as y ---+ 0, so that "as seen by the cells" this 
potential has a fixed range. For example, the inter­
action potential of two particles at the centers Yl/y 
and Y2/y of W(Yl/Y) and W(Y2/Y) is w-1K(Yl - Y2), 
which is independent of y. The need for the factor 
I/w in the potential can be understood by considering 
the contribution from w-lK(yr) to the potential 
energy of a single particle interacting with every other 
particle, for a state of uniform density p. An estimate 
of this contribution is 

u(y, w) == p f dr w-lK(yr), (2.4) 
JO(Zv) 

where n(ZV) is the union of all the w(y/y),s, i.e., 

n(zV) == U w(y/y). (2.5) 

This gives 
YEZ V 

u = p I 1.. f dr K(yr) 
YEZV W Jro(y/y) 

= p I ~ f_ dr K(r), (2.6) 
yeZV W J1o(Y) 

where w(y) is a cube of volume w == yVw, centered at 
y. Assuming K is continuous, we obtain 

~ f dr K(r) ---+ K(y) as y ---+ 0, (2.7) 
OJ Jru(y) 

and hence 

lim lim u(y, w) = lim u(y, w) 
(0-+ CX) )'-+0 jI-+O 

= pI K(y), (2.8) 
yeZ' 

which is finite if the sum converges [see condition 
(2.16)]. Without the factor I/w in the long-range 
potential, this limit would be infinite, and the system 
would behave catastrophically in the limit w ---+ 00. 
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The present model is very similar to the model 
considered by Lebowitz and Penrose and others.3.4.9 

They used a long-range potential of the form yV K(yr) , 
without confining particles to cells. The factor yV is 
needed for the same reason as the factor IJw is needed 
in the present model. The behavior of the two models 
is also very similar, as is shown in Sec. 3. 

We define the free energy density fi(p, T, y, w) in the 
usual way as follows. Let D be a set of points of ZV 
forming a cube, and let Q(D) be the set comprising 
all the w(y/y),s for which y E D, i.e., 

Dc ZV, Q(D) == U w(I) c Q(ZV). (2.9) 
YED Y 

Thus Q(D), which depends on y and w, has total 
volume 

!Q(D)! = w!D!, (2.10) 

where ! D! is the number of points in D. Then we 
define 

fi(p, T, y, w) 

== -kT lim _1_ log ZeN, D, T, y, w), (2.11) 
N.JDJ .... oo !Q(D)! 
NIJDJ .... "'p 

where 

ZeN, D, T, y, w) 

== -1-1 dXl···1 dXNeXP (-UN), Nt AvN nW) nCD) kT 
(2.12) 

which is the partition function for N particles in 
Q(D). Also, A is the thermal wavelength and 

UN == .2 V(Xa - X b , y, w) for N ~ 2. (2.13) 
l:5,a<b:5,N 

Note that, in (2.11), the average density of the particles 
N/!Q(D)I tends to p, while wand y remain constant. 
The definition (2.12) expresses the fact that particles 
can move from cell to cell. 

To complete the definition of the model, we must 
specify conditions on the functions q(r) and K(r) 
which ensure the existence of the limits (2.2) and (2.1 I). 
We shall assume always that 

q(r) = q( -r) and K(r) = K( -r), 

K(r) is continuous and bounded, 

!K(r)! < C Irrv
-., 

(2.14) 

(2.15) 

(2.16) 

where C and € are positive constants. Further con­
ditions are needed, and these may be of two types: 

Type-I systems: q satisfieslO the stability and tem­
pering conditions· of Fisherll [Eqs. (3.9a)-(3.9c) and 
(3.lla)]. No further conditions on K. (2.17) 

Type-II systems: q ~ 0 and q satisfies the tempering 
condition (3.lla) of Fisher.ll K(r) is also a "positive­
plus-positive" potential in the sense of Fisher [Eqs. 
(3.6a) and (3.6b)]. (2.18) 

For Type-I systems, it follows from (2.15), (2.16), 
and (2.17) that v(r, y, w) satisfies the stability and 
tempering conditions (3.9a)-(3.9c) and (3.11a) of 
Fisher, which imply the existence of fi. For Type-II 
systems, it follows from (2.15), (2.16), and (2.18) that 
v(r, y, w) is a positive-plus-positive potential and 
satisfies the tempering condition (3.11a) of Fisher, 
which again implies the existence of fi. 

For Type-II systems, v need not have a core. For 
example, a possible choice is q = 0, which we con­
sider further in Sec. 5. 

3. VARIATIONAL PRINCIPLE AND VAN DER 
WAALS-MAXWELL THEORY 

In this section we present the basic results for the 
cell model, and give an outline of their derivation. 
First, we need some definitions. Let C(p) be the set of 
all functions n == {n(y): y E ZV}, whose values n(y) 
are (a) nonnegative, (b) periodic with respect to y 
(with unspecified period), and (c) have average value 
p, i.e., 

_1_ .2 n(y) = p, 
W(n)! YEnn) 

(3.1) 

where r(n) c ZV is the unit cell of n and WI is the 
number of points in r. Let G(n, T) be defined for any 
n E C(p) by 

G(n, T) == _1_ .2 (aO[n(y), T] 
W(n)! YEnn) 

+ tn(Y)y~vn(Y')K(Y - Y'») , (3.2) 

where ao(p, T) is the free energy density of a con­
tinuum system, called the reference system, with the 
2-body potential q(r), i.e., 

aO(p, T) == -kT lim ~ log ZO(N, V, T), (3.3) 
N.JVJ .... oo IV! 
NIJVJ .... p 

where 

ZO(N, V, T) == Nt~VN LdX1 " ·LdxNexp C~~N), 
(3.4) 

QN == ~ q(x" - x h). (3.5) 
l:5,a<b:SN 

and V is a cube (in the v-dimensional real number 
space) of volume IVI. 
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The basic result about the cell model is given by the 
following variational principle. 

Theorem 1: For systems both of Type I and of 
Type II, the free energy density a(p, T), defined by 
(2.2), exists, is convex in p, and is given by 

a(p, T) = inf G(n, T). (3.6) 
nEC(p) 

The result (3.6) simply states that, to find a(p, T), 
one minimizes the free energy functional G(n, T) over 
all possible local density functions n(y). This is similar 
to the well-known thermodynamic principle of "mini­
mizing the free energy." One must use an infimum in 
(3.6) rather than a minimum, because one may need 
to make r(n) arbitrarily large to minimize G, which 
would mean that the minimum could not be attained 
for any n E C(p). (This happens for 2-phase states.) 

Theorem 1 should be compared with a correspond­
ing result of Ref. 3, Part I (Theorem 2). The latter 
result is the same except that n(y) is replaced by an 
integrable function, and the sums in the definition of 
G are replaced by integrals. The proofs of the two 
results are also very similar, and so we shall only give 
an outline of the proof of Theorem I here, and refer 
the reader to Ref. 3 for details. 

Outline of Proof (with T omitted from the notation): 
From (2.9) and (2.12), we can write 

ZeN, D, y, w) 

= I (n 1 r.) 
(N(Y»ES(N,D) YED N(y)! AvN(Y) Jw(y/y)N!Y) 

X dx1 ' • , dXN exp (- UNjkT), (3.7) 

where SeN, D) is the set of functions {N(y)} such that 
y E D and 

IN(y) = N, (3.8) 
YED 

where the N(y)'s are nonnegative integers. The nota­
tion in (3.7) indicates that there are N(y) volume 
integrations over each w(yjy). Since w-1K(yr) varies 
slowly with r for small y, the contribution from this 
potential, to the interaction between a particle in 
w(y{y) and a particle in w(y'/y), is approximately 
w-1K(y - y'). Also, the contribution from q(r) is 
almost zero because the cell separation becomes in­
finite as y -+ O. Hence we can write 

UN '-" I URr(y) + t I N(y)N(y')w-1K(y _ y'), 
YED y,y'ED 

(3.9) 

where U~(y) is the potential energy due to q(r) for a 

system of N(y) particles in w(y{y). This gives 

ZeN, D, y, w) 

~ I (II ZO[N(y), W)) 
{N(Y)}ES(N.D) YED 

X exp (- _1_ I N(y)N(y')K(y - y,»). 
2kTw y.y'ED 

(3.10) 

The log of this sum can be approximated by the log 
of the maximum term. Setting 

n(y) == N(y){w 

in the resulting expression gives 

kT 
- -- tog ZeN, D, y, w) 

IQ(D)I 

(3.11) 

= min _1 (- '2 .L kT log ZO[wn(y), w] 
(wn(Y)}ES(N,D> j Dj YED W 

+ tY.~Dn(y)n(Y')K(y - y,») + corrections. 

(3.12) 
If w is large, one can replace 

-w-1kTlogZO[wn(y), w] 

by its limit aO[n(y)], as w -+ 00, plus a small correction. 
Also, if w is arbitrarily large, the numbers n(y) can be 
arbitrarily close to any real number, consistent with 
(3.8); i.e., any function in the set CD(N/IQ(D)I), where 

CD(p) == {n: n(y) ~ 0 for y ED, and _1 '2 n(y) = p}, 
IDI YED 

(3.13) 

can be approximated arbitrarily closely by an n(y) of 
the form (3.11). 

To find a(p), we must first let IDI-+ 00 with 
N{IQ(D)I-+ p in (3.12), which by (2.l1) gives ii(p, 
1', w); then we must let y -+ 0 and finally w -+ 00. By 
the method of Ref. 3, the corrections can be shown to 
vanish in the above triple limit. Hence we have 

a(p) = lim min _1_ 
lDl~oo nECn(p) IDI 

X CfnaO[n(y») + tyIDn(y)n(Y')K(y - y'»). 
(3.14) 

This is itself a variational principle for a(p, T). One 
can show that it is equivalent to (3.6), by using the 
method of Sec. 3 in Ref. 3. The convexity of a(p, T) 
follows3 from the convexity of ii(p, T, y, w). 
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A basic property of the model is that, like the model 
considered in Refs. 3, 4, and 9, it yields a generaliza­
tion of the van der Waals-Maxwell theory of the gas­
liquid transition for a certain class of functions K. 
More precisely, if we put 

which implies that only particles in nearest-neighbor 
cells interact via the long-range potential. Let us put 

Ko === K(O), (4.3) 

and let the system be isotropic so that 
K(p) === L K(s) exp (27Tip • s) 

leZ V 

and 

r.t === L K(s) = K(O), 

(3.15) 
K(s) = Kl for lsi = 1. 

(3.16) One easily shows that 

(4.4) 

seZ V 

we then have the following. 

Theorem 2: (a) If the function K is such that f( ~ 0, 
then 

K ~ 0 if and only if Ko ~ 2v IK11, 

so that a(p, T) is given by (3.17), where 

r.t = K(} + 2vK1 • 

(4.5) 

(4.6) 

a(p, T) = G(p, T) = a(}(p, T) + !r.tp2. (3.17) One can also show that 

(b) If K(p) ~ K(O) for all p (of which a special case is 
K ~ 0), then 

a(p, T) = CE[an(p, T) + !OCp2], (3.18) 

where CEf(p) , called the convex envelope of f, is 
defined for any f as the maximal convex function not 
exceeding f (p ). 

This theorem, which is due essentially to Lebowitz 
and Penrose,9 can be deduced from Theorem 1 by 
adapting the method of Ref. 4 (Sec. 5). The pressure 
corresponding to (3.18) is given by the Maxwell con­
struction applied to a generalized van der Waals 
equation. Note that for Type-II systems (/. ~ 0, so 
that (b) does not apply. 

The other results of Refs. 3 and 4 can also be easily 
adapted. In particular, one can show that for some 
functions K the Eqs. (3.17) and (3.18) do not apply. 
Instead, the functional G(n, T) is minimized by a 
nonuniform, periodic function n(y), so that the system 
has a crystalline phase. It is this phenomenon which is 
investigated in more detail in the following sections. 

4. THE CASE OF NEAREST -NEIGHBOR 
INTERACTIONS 

To study the above-mentioned phenomenon of 
crystallization, we consider some special cases of the 
model. The simplest case is obtained by choosing 

K(O) = oc, K(s) = 0 for all s ~ 0, S E ZV. 

(4.1) 

This gives K(p) = K(O), so that (3.17) and (3.18) apply 
for all oc. 

More interesting is the special case with 

K(s) = 0 for lsi> 1, s E zv, (4.2) 

K(P) ;;::: K(O) if and only if Kl ~ 0, (4.7) 

so that a(p, T) is given by (3.18). These results are 
indicated in Fig. 2 by the regions (1) and (2). We 
shall find that systems in the remaining region (3) have 
a crystalline phase. 

We now derive an equation of state which holds for 
all Ko and K1 , including the region (3). First, we 
define the function M Ef, called the midpoint envelope 
off, by 

MEf(p) === inf Hf(p + h) + f(p - h)] (4.8) 
h 

for any function f(p). We shall prove the following. 

Theorem 3: For the nearest-neighbor cell model, 
defined above, 

a(p, T) = CE{ME[aO(p, T) + (Ko - !OC)p2] 

+ (oc - KO)p2}. (4.9) 

For values of p and T, where the bracket { } coincides 
with its convex envelope, one can also write 

a(p, T) = G(n*, T). (4.l0) 

Here n*(y, p, T) minimizes G(n, T) for n E C(p), and 

(3) crystalline and 

fluid phases 

(2) two or more 

fluid phases 

FIG. 2. The properties of the nearest-neighbor cell model as deter­
mined by the interaction constants Xo and Xl' 
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has the form12 

n*(y, p, T) = p+(p, T) for ~ Yk ~ven, 

= p_(p, T) for 2 Yk odd, (4.11) 

where Hp+ + p_) = p and Yl ... Yv are the compo­
nents of y: i.e., the system has a local density n* with 
two (possibly equal) values p+ andp_ arranged in a 
checkerboard (sodium chloride) pattern (see Fig. 3). 
When the bracket { } differs from its convex envelope, 
the system has two phases, both with a density of the 
form (4.11). 

Before proving this theorem, we note some of its 
consequences. Using the properties4 of the operation 
ME, one can show that (4.9) reduces to the van der 
Waals-Maxwell results (3.17) and (3.18) under con­
ditions (4.5) and (4.7). Also, Theorems 2 and 3 of 
Ref. 4, together with (4.9), imply that (3.17) and (3.18) 
do not hold in region (3) of Fig. 2. More precisely, 
they imply the following. 

Corollary 1,' If Kl > 0 and 2vKl > Ko, and the 
function aO(p, T) + (Ko - tIX)p2 is not convex in p 
(i.e., T is sufficiently low), then there are values of p 
for which 

a(p, T) < CE[aO(p, T) + tIXp2]. (4.12) 

that 
a(p) ~ G(n') for any n' E C(p). (4.14) 

Choosing n' to be given by the right side of (4.11) 
yields 

G(n') = HaO(p+) + aO(p_) 

+ tKop! + tKop~] + vK1P+p_. (4.15) 

Since Hp+ + p_) = p, we can put P± = P ± h, 
where h is any positive constant such that p ± hare 
in the domain of an. Then (4.14) and (4.15) yield 

a(p) ~ t{ao(p + h) + ao(p - h) + (tKo - vKl ) 

x [(p + h)2 + (p - h)2]) + 2vKlP2. (4.16) 

Since h is arbitrary, we can minimize the rig~t side 
with respect to h. Via (4.8), this gives 

a(p) ~ ME[aO(p) + (tKo - VKl)p2] + 2vKIP2. 

(4.17) 

Using (4.6) and noting that a(p) is convex, we obtain 

a(p) ~ CE{ME[aO(p) + (Ko - tIX)p21 

+ (IX - KO)p2}. (4.18) 

To obtain a lower bound on a(p), we first express G 
in a more convenient form. Let us put 

(4.19) 

The set of such values of p includes (a) those intervals Since n(y) is periodic, it follows that 

where aO + iIXp2 differs from its convex envelope and ~ ip[n(y)] = 21P[n(y + a)] for any a E ZV. (4.20) 
also (b) those intervals where aO + (Ko - iIX)p2 yef 

differs from its midpoint envelope. 

In the intervals (a) and (b) it follows from Theorem 
3 that the system is in a state with (or has at least one 
phase with) a density of the form (4.11), where p+ =;C 

p_. Such states can be described as spatially ordered 
or crystalline. 

We prove Theorem 3 by using Theorem 1 to obtain 
upper and lower bounds on a(p, T). In the present 
case, it follows from (3.2) that 

G(n) = + 2: (aO[n(y)] + i K on(y)2 
II I yer 

+ K\~ln(y)n(y + ek») , (4.13) 

where el ... ev are the unit vectors in ZV. An upper 
bound on a(p) can be obtained by noting, from (3.6), 

A- p- p+ p- p+ 
FIG. 3. The crystal structure in the 

nearest-neighbor cell model (2-dimen- p- Pt- p- p+ p-
sional case) as given by (4.11). 

p+ P- P ... p- p ... 

yer 

In particular, this holds if a is any of the ek • Thus 
(4.13) reduces to 

where 

where 

. 1 1 v 

G(n) = WI Y?; ;; ~~lgin, y), 

gk(n, y) == t<p[n(y)] + t<p[n(y + ek)] 

+ vKln(y)n(y + ek) 

= ttp[n(y)] + itp[n(y + ek)] 

(4.21) 

+ tvK1[n(y) + n(y + ek)]2, (4.22) 

tp(p) == lP(p) - VKIP2. (4.23) 

[gin, y)/v can be interpreted as the free energy of the 
bond between the cell at y and the cell at y + ek .1 
From the definition of MEtp it follows that for all PI 
and P2 

ttp(Pl) + itp(P2) ~ MEtp(lPl + IPJ, (4.24) 

which with (4.22) gives 

gk(n, y) ~ ~[tn(y) + tn(y + ek)], (4.25) 
where 
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But the definition of CE~ implies 

Hp) ~ CE~{p) 

= CE{ME[aO(p) + (iKo - VK1)p2] + 2vKIP2} 

== '(p), say. (4.27) 

This gives 

gk(n, y) ~ '[in(y) + tn(y + ek)]. (4.28) 

Substituting this in (4.21) and using the convexity of 
, gives 

G(n) ~ , - I - I [in{y) + in{y + ek )] ( 
1 1 v ) 

WI YEr v k=l 

= '(p) for all n E C(p), (4.29) 

where the equality follows from (3.1). Since (4.29) 
holds for all n, it follows that 

inf G(n) ~ '(p), (4.30) 
nEC(p) 

which together with (3.6) and (4.18) proves (4.9). 
The statements (4.10) and (4.11) follow from the 
argument leading to (4.18). This completes the proof 
of Theorem 3. 

5. NEAREST-NEIGHBOR INTERACTIONS AND 
IDEAL REFERENCE SYSTEM 

To analyze in detail the kind of thermodynamic 
behavior predicted by the equation of state (4.9), we 
consider in this section the special case 

q(r) = 0 for all r, Ko = O. (5.1) 

Consequently, the reference system is an ideal gas. 
From (2.17) and (2.18) we see that (5.1) is a Type-II 
system, so that K(r) must satisfy the conditions (2.18). 
One can easily show that these conditions are satisfied 
if and only if 

We now have 
rx = 2vK1 ~ 0, 

so that (4.9) becomes 

(5.2) 

(5.3) 

a(p, T) = CE{ME[ao(p, T) - trxp2] + rxp2}. (5.4) 

Also, aO is the free energy density of an ideal gas, i.e., 

aO(p, T) = kT[p log (Np) - pJ, (5.5) 

where A is the thermal wavelength. 
Equation (5.4) can be simplified by using Lemma 5 

of Ref. 4, which states that, for any function f(p) 
and any constants Land M, 

Substituting (5.5) in (5.4) and using (5.6) and (5.7) 
gives 

a(p, T) = AX(Bp) + Cp, (5.8) 

where 

x('f}) == CE{ME['f/ log 'f} - t'f}2] + 'f}2}, (5.9) 

A(T) == (kT)2jrx, (5.10) 

B(T) == oc/(kT), (5.11) 

qT) == kT[log (NkTjrx) - 1]. (5.12) 

The numbers A and B are nonnegative, while A is an 
increasing and B a decreasing function of T. Hence, 
an immediate consequence of (5.8) is that there is no 
critical temperature. As T varies, the graph of AX(Bp) 
against p changes only in scale. The temperatures at 
which C = 0 are not significant because C appears 
only in the combination Cpo The result (5.8) can be 
simplified further by using the following. 

Lemma 1: The function 

ar{'f}) == ME('f} log 'f} - !rJ2) + 'f/2 

is strictly convex. 

Proo!' We first prove that 

(5.13) 

a;{'f}) > 0 for 'f} ¥: 1. (5.14) 

From (4.13), one can write, for any continuous func­
tionf, 

where 0{1]) ~ 0 is the function which minimizes the 
right side. It follows that the right side is stationary 
with respect to variations in 0, which implies 

1'[1] + 0{1])] = f'['f} - 0(1])]. (5.16) 

Using this, we deduce from (5.15) that 

~ MEf('f}) = f'['f} + o('f})]. 
d'f} 

(5.17) 

The results (5.16) and (5.17) have a simple graphical 
interpretation. Let MLg(rj), called the midpoint locus 
of g, be defined for any g, as the locus of the midpoints 
of the horizontal chords of g(1]). It follows that if 
MLf'(1]) is single valued, then 

!L MEf(n) = j'('f}), where O(n) = 0, 
dn 

= MLj'(n), where o(n) > O. (5.18) 

ME(f(p) + Lp + M] = MEf(p) + Lp + M, (5.6) We now choose 

CE[f(p) + Lp + M] = CEf{p) + Lp + M. (5.7) fen) == n log n - tn2, (5.19) 
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so that 
I' ('YJ) = log 'YJ - 'YJ + l. (5.20) 

By sketchingI' (see Fig. 4) and its midpoint locus, we 
see that 

(S.29) is positive for <5 > O. It follows that 

O'('YJ) > -2 for 'YJ> 1 

and from (S.23) that 

a;('YJ) > 0 for 'YJ > 1. 

(S.30) 

(S.31) <5('YJ) = 0 for 'YJ ~ 1 

> 0 for 'YJ> 1. 

Hence from (S.18) we have 

OCr;) == .E..- MEi(r;) 
d'YJ 

(S.2I) This together with (S.2S) proves (S.14). To complete 
the proof of Lemma 1, we note from (S.22) (see Fig. 4) 
that OCr;) is continuous, and is zero for r; = 1, which, 
with (S.23), implies 

= 10g'YJ - rJ + 1 for rJ ~ 1 a;(I+) = a;(1-) = 2. (5.32) 

= ML[log rJ - 'YJ + 1] for r; ~ 1, (S.22) This together with (S.14) proves Lemma l. [The 
result (S.30) means that the midpoint locus shown in 
Fig. 4 has a gradient> -2.] 

and from (S.13) 

(5.23) It follows from Lemma 1 that the CE in (S.9) can 
From (5.22) we immediately have 

O'('YJ) > 0 for 'YJ < 1, 
so that 

(S.24) 

a;(rJ) > 2> 0 for 'f) < 1. (S.2S) 

To complete the proof of (S.14), we use (5.16), (S.17), 
(S.20), and (S.22) to obtain, for 'f) > 1, 

O('f) = log(r; + <5) - ('f) + <5) + 1 

= log (r; - <5) - ('f) - ~) + 1. (5.26) 

It follows from this that b('f)is given implicitly by the 
equation 

b coth b = 'f). (S.27) 

[This implies that b('YJ), and hence O('f), are single 
valued, as required.] Differentiating (S.26) with 
respect to 'YJ and using (S.27) to obtain 

0' = [cosh (2<5) - 1]/ [sinh (2b) - 2b] (S.28) 

yields, after simplification, 

O'er;) = -2 

be dropped, so that (5.8) becomes 

a(p, T) = Aar(Bp) + Cpo (S.33) 

Hence a(p, T) is a strictly convex function of p, so 
that its graph has no straight line segments. This 
means that the system has no first-order transitions. 
Furthermore, since a"(1}) is discontinuous at 1} = 1, • it follows that o2a(p, T)/Op2 is discontinuous at 
Bp = 1. Thus a second-order transition occurs when 

p = kT/rx, (S.34) 

and this transition persists for all temperatures. The 
function a.(r;), called the reduced free energy, deter­
mines the shape of the isotherms of a(p, T). 

The chemical potential is given by 

pep, T) == ~ a(p, T) = kTprCBp) + C, (5.3S) 
op 

where Pr' called the reduced chemical potential, is 
defined by 

(S.36) + [cosh (2<5) - I - 2<52]/ { <5 [sinh (2<5) - 2<5]}. 
(S.29) The function Pr' which gives the shape of the isotherms 

of pep, T), is sketched in Fig. Sea). To find the gradient 
of Pr(rJ) at 'f) = 1 +, we use (S.29) to obtain By sketching graphs one finds that cosh x > 1 + tx2 

and sinh x> x for x > 0, so that the second term in 

log l) - '7 + 1 

FIG. 4. Illustration of the functions (}(TJ) and c5(TJ}. 

(see also Fig. 4), which with (5.23) gives 

p;{rJ) = a;(rJ) -+ t as 'f) -+ 1 +. 

(S.37) 

(5.38) 

Figure Sea) also gives the shape of the isotherms of 
the density pep, T) in the grand ensemble, because 
pep, T) is just the inverse function of pep, T) for 
constant T. 

Note that for 1} ~ 1 the function Pr('YJ) is given 
parametrically in terms of 0 by Eqs. (5.23), (5.26), and 
(5.27). One can eliminate b as follows. From these 
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(d) 
FIG. S. (a) Thereduced chemical potential ftr which gives the 

true chemical potential through Eq. (5.35). (b) The reduced pressure 
l7r which gives the true pressure through Eq. (5.43). (c) the pressure­
temperature phase diagram. (d) The fun~tions 1I± which give the 
densities p± through Eq. (5.51). 

equations we have 

() = ! log (1J + c5){ 1] - 15) - 1] + 1 

= Ilr - 21J, 

which gives 

(5.39) 

15 = [1J2 - exp {21lr - 21J - 2)]!. (S.40) 

Substituting this in (S.27) gives an implicit equation 
for Ilr of the form ~(f.tr> 1]) = O. Alternatively, Ilr is 
given directly for 1] > 1 by the graphical construction 

Ilr(1]) = the locus of the midpoints of the chords 

of (log 1] + 1] + 1) of gradient 2. (5.41) 

To find the canonical pressure 

2 a (a(p, T») 7T(p, T) == P - --- , 
op p 

(5.42) 

we use (5.33) and obtain 

1T(p, T) = A1Tr(Bp), (5.43) 
where 

2 0 (a r (1J») 1Tr{1J) == 1] - -- , 
OfJ 1] 

(5.44) 

which we call the reduced pressure. The following 

results are easily deduced from the properties of ar : 

1Tr{1J) = 1J + t1J2 for 1J ~ 1, 

~;(~) -{~ 
for 1J=0 

for (5.45) 1J = 1-
for 1J = 1+ 

--+- 1 as fJ --+- 00. 

The function 1Tr is sketched in Fig. S{b). From (5.43) 
and (5.45) we obtain 

1T(p, T) = pkT + tIXp2 for p ~ kTjlX, (S.46) 

so that the transition occurs when 

1T = (3k2j21X)T2 

or, equivalently, when 

1T = (31X/2)p2. 

(S.47) 

(5.48) 

The phase diagram for 1T is sketched in Fig. 5(c). It 
would be a simple matter to plot the isotherms of 1T 
accurately by using a parametric formula for 1Tr in 
terms of 15. 

In the crystalline phase the local density n* has the 
form (4.11). The functions P±(p, T) are found by 
minimizing the right side of (4. IS), which in the present 
case yields 

kT log (N p:J + IXP~ = m, (5.49) 

where m is a Lagrange multiplier. This can be written 
as 

(5.S0) 

which closely resembles the integral equation of the 
mean field theory of melting. loS The solution is easily 
shown to be 

P±(p, T) = (kTjlX)1J±(lXp/kT), (5.51) 
where 

(5.52) 

and c5(fJ) is given by (5.27). The functions 1J± are 
sketched in Fig. S( d). The important features are that 
p+ and p_ become rapidly unequal at the onset of 
crystallization and that at high de~sities or low tem­
peratures the system approaches the density distri­
bution p+ = 2p and p_ = O. 

6. CORRELATION FUNCTION~ 

In order to understand better the structure of the 
different phases of the model, it is useful to consider 
the correlation functions. We consider first the k­
particle distribution function nk(x1 '" Xk, N, D, T, 
y, w) for N particles in Q(D) [see (2.9)], defined in 
the usual way13 in terms of the 2-body potential (2.1). 
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Note that nk is defined only for Xi E O(D). Following 
Fisher,13 we define a space-averaged, infinite-volume 
distribution function by 

flk(fl ' .. f k_l , p, T, y, w) 

== lim _1_ r dx nk(x, X + fl' 
N,IDI .... oo IO(D)1 Jaw) 
N/IDI .... pro 

... x + f k- l , N, D, T, y, w). (6.1) 

To understand the structure of the system in in­
dividual cells, we consider the short-range distribution 
function 

fl~(~-l, p, T) == lim lim flirk-l, p, T, y, w), (6.2) 
(0-+ 00 ')'-+0 

where fm == (rl ... fm). A similar function was defined 
and studied by the author in Ref. 14. Some general 
results for n~ can be obtained from Eqs. (10)-(13) of 
this reference by replacing integrals with respect to y 
by summations with y in Z' and by replacing np by n*. 
For the particular system considered in Sec. 5, Eqs. 
(10) and (12) of Ref. 14 give 

fl~(f, p, T) = l for p ~ kTjoc (fluid) 

= Hp! + p:) for p 2 kT/oc (crystal). 

(6.3) 

The result for the crystal phase means that, in the short 
range (i.e., in individual cells), the system "looks like" 
a mixture of equal volumes of two different fluids of 
densities p+ and p_. This is expected, because there is 
no crystalline structure in individual cells. 

To understand the structure of the general system 
over distances of order y-l {i.e., on the scale of the 
long-range potential w-lK(yr) and of the cell separa­
tion], we consider the long-range distribution function 

-L( k-l T) l' l' - (SI Sk-l ) nk S ,p, == 1m 1m nk - ., • -, p, T, y, w . 
ro-+oo y .... o y y 

(6.4) 

Some general results for this function can be obtained 
from Eqs. (15) and (16) of Ref. 14 by again replacing 
integrations over y by sums. For the particular system 
considered in Sec. 5, these equations yield 

fi~(s, p, T) = p2 if p ~ kT/oc (fluid) 

= t(p! + p:) for L Sa even} 
= p+p_ for ! Sa odd 

if P 2 kTjoc (crystal), (6.5) 

where sl'" ·,s. are the components of s. For the 
crystal phase, n~ is therefore periodic with the same 
symmetry as n *. It does not tend to p2 as' lsi - 00, 

i.e., there is "long-range order." 

Finally, we consider the modified Ursell correlation 
function Uk(X l .•. Xk ' N, D, T, y, w), defined in terms 
of the nk in the usual way.15 We define their space 
averages iiirk-I, p, T, y, w) as in (6.1). To understand 
the relevance of the Ornstein-Zernike theory15 to the 
cell model, we consider the weighted Ursell function 

iif (Sk-\ p, T) 

- l' l' k-l - (~ .. , Sk_l T. ) (6 6) = 1m 1m w Uk' ,p, ,y, w. . 
ro-+ 00 y .... O Y Y 

The general results for this function can be obtained 
from Eqs. (18)-(24) of Ref. 14 by again replacing the 
integrals over y, s, and p by sums in Z'. 

For the system of Sec. 4, with nearest-neighbor 
interactions, which, in addition, is one dimensional 
(v = 1) and has Ko = 0, we deduce from (20), (21), 
and (22) of Ref. 14 that for one-phase states 

ii~(s) = t§(O, s) + t§(1, s + 1), (6.7) 

where p and T dependence is omitted from the nota­
tion, and §(y, y') is the solution of the difference 
equation 

toc§(y + 1, y') + toc§(y - 1, y') + a~[n*(y)]§(y, y') 

= kTby,v" (6.8) 

subject to the boundary condition 

§(y,y')-O as Iy - y'1- 00, (6.9) 
where 

(6.10) 

In the case oc < 0, which yields the van der Waals­
Maxwell result (3.18), we have n* = p for one-phase 
states, and (6.8) has the solution 

where 
§(y, y') = kT[(a~)2 - OC2riAlv-v' I , (6.11) 

A == {[(a~)2 - oc2]i - antoc. (6.12) 

Since a~ > -oc for one-phase states (i.e., aO + tocp2 is 
convex), it follows that ° < A < 1, so that (6.9) is 
satisfied. Combining (6.12) with (6.7) now gives 

ii~(s, p, T) = kT[(a~)2 - oc2]-iAls l. (6.13) 

This has the form of the one-dimensional Ornstein­
Zernike formula.15 In particular, ii'f becomes very 
long range (A - 1) as the critical point is approached 
(a~ + oc - 0). Unlike the Ornstein-Zernike formula, 
(6.13) is exact and holds for all S E Zl. 

In the case IX > ° and q = 0, which yields the 
crystal states of Sec. 5, we have12 . 

n*(y) = p if p ~ kT/oc 

= p+ for y even} 
= p_ for y odd if P 2 kT/oc, (6.14) 
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where p+ and p_ are given by (5.53). Also, from (5.5), 
we have 

a~(p, T) = kT/p. (6.15) 

For p < kT/rx we again obtain (6.11)-(6.13), but now 
with -1 < A. < 0, so that a'f alternates in sign as s 
varies. Now a'f becomes very long range (A. -+ - I) 
at the freezing point. This is in contrast with the 
behavior of the thermodynamic functions, whose 
analytic forms in the fluid phase do not indicate the 
freezing transition [ef. (5.46)]. For p > kT/rx, one 
obtains from (6.8), after a fair amount of work, 

~(y, y') = h(y)h(y')g(y - y'), (6.16) 
where 

hey) :=;: pi for y even 

:=;: p! for y odd (6.17) 
and 

g(s) :=;: (1 - 17+17_rtK lsl. (6.18) 

Here 17± are given by (5.51) and (5.52), and 

K:=;: {(l - 17+17-)! - 1]/(17+17-)!' (6.19) 

Combining these with (6.7) yields, for p > kT/rx, 

a~(s, p, T) = pg(s) for seven 

= (p+p_)!g(s) for s odd. (6.20) 

From (5.52) and (5.27) we have 

17+17- = ()2/sinh2 () < 1 for () > 0, (6.21) 

which implies that K is real and - I < K < 0, so that 
g(s) alternates in sign as s varies. The result (6.20) 
again resembles the Ornstein-Zernike formula, but is 
modified by the crystal structure. Again a'f becomes 
very long range at the melting transition because, 
from (6.19) and (6.21), K-+ -1 as (J-+O. It is inter­
esting to note that in the present case (el > 0) the 
function a'f becomes long range at the fluid-crystal 
transition for all temperatures, while for the previous 
case (rx < 0) it becomes long range only at the critical 
temperature and density of the gas-liquid transition. 

The function a'f is related to the pressure 7T [Eq. 
(5.42)] by the compressibility formula 

kTp _w 
::I ()/::I = 2,U2 (s, p). (6.22) 
U7T P up seZ 

This can be either deduced from the general results of 
Ref. 14, or verified directly from (6.13) and (6.20). 
For the gas-liquid system (rx < 0) the sum in (6.22) 
diverges at the critical point, and hence 07T/Op -+ 0 as 
expected. But, for the crystal-fluid system (oc > 0) 
the sum does not diverge at the melting or the freezing 
side of the transition. Even though a'{! becomes long 
range, the fact that it alternates in sign results in a 

finite sum (note that! lurl does diverge16). Hence 
07TjOp tends to (different) nonzero values on each side 
of the transition, as indicated earlier in (5.45) and Fig. 
5(b). It would be interesting to know the extent to 
which these results can be generalized to melting 
transitions in more realistic models. 

The results of this section can be derived by the 
method of functional differentiation outlined in Ref. 
14. The derivation is not quite rigorous but is based, 
like that of Lebowitz and Penrose,9 on the assumption 
that certain limits and derivatives exist. 

7. MAGNETIC SYSTEMS 

As pointed out in Sec. 1, the model of t~is paper 
can be applied to magnetic systems, and yields as 
special cases both the Weiss theory of ferromagnet­
ism and the Neel-van Vleck theory of antiferromag­
netism.l' In this section we outline how this occurs. 

We consider a system of N spins <11 , • ',<1N arranged 
on those sites Xl' . ·,XN of a v-dimensional lattice (of 
arbitrary lattice constant) which lie in the set neD) 
defined by (2.9), i.e., only the cells {w(y/y)} contain 
spins. The Hamiltonian is 

(7.1) 

where v is given by (2.1). Using the canonical formal­
ism, rather than the more usual grand canonical 
formalism, one can define the free energy per spin 
ii(p, T, y, w), where p is now the magnetization per 
spin and 

(7.2) 

The free energy a(p, T) of the model is then defined by 
(2.2). 

One finds that the variational principle (3.6) again 
holds if the condition n(y) ~ 0 in the definition of 
e(p) is replaced by 

-1 ~ n(y) ~ 1. (7.3) 

Here, the random function n(y) represents the local 
magnetization in the cell at y. 

Theorem 2 also holds for the magnetic case. We 
show that the Weiss theory of ferromagnetism follows 
from Eq. (3.18) of Theorem 2 if q = O. In this caselS 

aO(p, T) = kT{i(l + p) log [t(l + p)] 

+ t(l - p) log a(l - p)]}. (7.4) 

In the canonical formalism, the magnetic field H(p, T) 
is given as a function of magnetization p by 

H(p, T) = oa(p, T) . 
op 

(7.5) 
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Combining this with (7.4) and (3.18) gives, with 

IX < 0, 

H(p, T) = 0, for Ipi S; (1 + kT/IX)t, 

= kT tanh-1 p + IXP, otherwise, (7.6) 

which is just the main result of the Weiss theory. IS 

All the results of Sec. 4 hold for magnetic systems 
without modification. The crystalline states can here 
be interpreted as states with anti ferromagnetic order­
ing. We now show that the special case considered in 
Sec. 5 yields precisely the Neel-van Vleck theory of 
antiferromagnetism. In this case (5.4) holds, with aO 
given by (7.4). The simplification leading to (5.8) does 
not apply here, so that the behavior of the system is 
more complicated. However, one can prove the analog 
of Lemma 1; viz., if (1. > 0, the function 

"P(p, T) :: ME[aO(p, T) - tlXp2] + (1.p2 (7.7) 

is a strictly convex function of p for all T > O. This 
means that 

a(p, T) = 1p(p, T) (7.8) 

and that a(p, T) is strictly convex, so that from (7.5) 
p is a continuous function of H. Hence, there are no 
two-phase states (consisting of two phases with 
different magnetization) and consequently no ferro­
magnetic transitions. (This question seems to have 
been overlooked in the original derivations.) Now, 
using essentially the argument of Sec. 5, we obtain 
from (7.5) and (7.8) 

H(p, T) = kTtanh-1 p + IXp 

for Ipi ~ (l - kT/IX)! (7.9) 
and 

H(p, T) = kTtanh-1 (p ± 0) - (1.(p ± 0) + 2(1.p 

for ipi S; (1 - kT/IX)i, (7.10) 

where IX > 0 and o(p, T) is given implicitly by the 
equation 

p2 = 1 + 02 - 20 coth (21X0/kT). (7.11) 

[The two alternative expressions for H in (7.10) are 
equal by virtue of (7.11), cf. (5.26)]. This is precisely 
the main result of the Neel-van Vleck theory.19 It 
implies that there is ordering whenever Ipi S; (l -
kTfIX)t. Consequently, there is no ordering for any p 
if T > T,v, where 

(7.12) 

which is called the Neel temperature. Some other 
results are given by GarrettY Besides these, one can 
show that, although H(p, T) is a continuous function 
of p, its gradient is discontinuous at the order-disorder 

transition. (I have obtained some other exact results 
about the magnetization and susceptibility curves, 
analogous to those in Sec. 5, which seem to be new 
but not worthy of publication.) 

The derivation of the Neel-van Vleck theory out­
lined here is an advance on the original derivations in 
two main respects: (i) It is based on a statistical model, 
and (ii) the existence and the checkerboard symmetry 
of the antiferromagnetic states has been proved, not 
assumed, i.e., the introduction of "sublattices" has 
been avoided. 

8. DISCUSSION 

The main results of this paper are summarized in 
the abstract. 

It would be interesting to study cases of the model 
which are more general than the nearest-neighbor 
case. The simplest problems arise in one-dimensional 
systems. For example, in the case of nearest- and next­
nearest-neighbor interactions, what is the crystal 
structure? It seems that the periods 2 and 3 are both 
possible, or perhaps the period 6 occurs, or even a 
transition between two crystalline states of different 
periods. If the next-neighbor interactions are suffi­
ciently attractive, it seems that the system could have 
both a gas-liquid transition (of the first-order van der 
Waals-Maxwell type) and a second-order liquid­
crystal transition. Such a system may have a triple 
point, which would be interesting to study. Possibly, 
this also happens in the nearest-neighbor case of Sec. 
5 if Ko < O. 

For the case where the interactions extend to even 
more neighbors, it is not easy to see what the periods 
of the crystal states will be, especially in more than 
one dimension. Possibly, some sort of group theory 
could be used to study this problem in a general way. 
The foundations of such a theory have already been 
formulated.8 

The model is related to the mean-field theory of 
melting [see Eqs. (3.6) and (5.50) and Refs. 1 and 5]. 
We therefore suspect that the latter theory will give 
a similar second-order melting transition with no 
critical temperature, but this has yet to be proved. 

Apart froPl its obvious artificiality, the model does 
not properly duplicate the mechanism by which 
melting and freezing are currently believed to occur, 
namely,7 by the geometrical disordering and ordering 
of hard (or sufficiently hard) spherical particles. The 
model in this paper "freezes" simply because repul­
sion between particles in neighboring cells favors a 
nonuniform density. The model is more realistic for 
antiferromagnets, since it roughly duplicates the 
forces which cause opposite alignment of neighboring 
spins in real antiferromagnets. 
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I. INTRODUCTION 

Since the original proposal by Veneziano! of a 
simple functional form for a scattering amplitude with 
crossing symmetry and duality, there has been inten­
sive study of both the mathematical properties2 of the 
model and its applications to hadron phenomenology. 
Despite this intense investigation, many fundamental 
features of even the simplest form of the Veneziano 
model remain unresolved. In particular, the poles 

. which appear in the familiar "partial fraction" 
expansion of the model should have positive residues; 
otherwise, the poles would have to be interpreted as 
due to negative norm intermediate states (ghosts). 
While much work has been done on this problem,2-5 
there has yet to be a definitive determination of a 
region of model parameters for which all residues are 

positive. It is true that a solution to this problem 
would not necessarily eliminate the ghost problem in 
the Veneziano model. Models such as that put 
forward by Nambu6 and co-workers, which deal with 
the factorizability of the residues, indicate that 
positive residues in the four-point function might have 
to be interpreted as sums of residues from sets of 
degenerate poles, some of which are ghosts. Nonethe­
less, a first step would seem to be a solution of the 
positivity problem for the simple model. 

Our purpose in this paper is to present a number of 
mathematical results which are central to the study of 
the positivity of the residues. We derive explicit 
formulas for the coefficients of the partial wave 
expansion of the Veneziano amplitude and show that 
the problem of positivity can be reduced to a study of 
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the zeros of certain polynomials. While the results 
contained here have probably been derived by other 
workers interested in this problem, they have not been 
published, and their collection in one paper will prove 
useful to other investigators. 

II. PROPERTIES OF THE RESIDUES IN 
THE VENEZIANO MODEL 

In the body of this paper we will confine our 
attention to the function l 

Yes, t) = 1'(1 - a(s»r(l - a(t» , 
1'(1 - a(s) - lX(t)) 

(1) 

where IX(X) = lXo + IX' x. Remarks on the general case 
will be found in the Appendix. As is well known, this 
function has the partial fraction expansion2 

Yes, t) = ~ I'(K + 1X(t) 1 
K=l r(K)r(IX(t» IX(S) - K 

In general, each pole in the expansion appears in a 
number of partial waves. Since it is the residue 
corresponding to a state with definite angular mo­
mentum that is of physical interest, we must consider 
the partial wave expansion of the expression 

r(K + a(t» 
TK(IX) = = IX(IX + 1)' .. (IX + K - 1). 

r(1X(t» 
(2) 

For convenience, we will consider only the case of 
equal mass scattering (such as mr scattering). Then 
we can write 

lX(t) = lXo + lX't = 21X'k2z + (lXo - 21X'k2) == az + b, 

where z is the cosine of the scattering angle and k is 
the center of mass momentum. T K(IX) is thus seen to 
be a polynomial of degree K in z, and so we can 
expand it as follows: 

K 

T K(IX) = 2 (2J + 1)C~(a, b)P JCz). 
J=O 

To find the coefficients cf, it is convenient first to 
write T K(IX) in the form 

K 
TK(IX) = 2 S<;)lXm, (3) 

m=l 

where we have the explicit expression for the Stirling 
number 

K-m 1 (_l)K+m+n 
s<X) = 2 2 ->---;'-"---

1=0 n=O I! 

X (K - 1 + 1)( 2K - m ) (/)nK-m+l. 
K-m+l K-m-l n 

For computational purposes, it is more convenient 
to generate the sjf') from the recursion relations: 

slJi = (K - 1)!, S<J-) = 1, 

S<;c) = s<X~f) + (K - 1)S<;~l' 1 < m < K. (4) 

Now we substitute lX(t) = az + b in (3), use the 
binomial expansion, and obtain 

TK(IX) = ;~o i;s<;)(;) bm-iaizi, 

where, for convenience in reordering the sum, we have 
defined S~) = 0 for all K. Further reduction is made 
by using the expansions 

k 

Z2k = 2 (4r + I)YZ~rP2r(Z) 
,=0 

and 
k 

Z2k+1 = 2 (4r + 3)y:~::tP2r+I(Z), 
r=O 

where 

y;; = (J + 2m)!/2mm! (2J + 2m + 1)!!' 

This leads us to the result 

[(K-J)/2] 

CK(a b) = '" yJ aJ +2mBK (b) J' "- m K-J-2m' 
m=O 

where [xl means the largest integer contained in x and 

B~(b) = f S~+K_N)(1 + K - N)b l• (5) 
1=0 I 

The functions B~(b) have a number of interesting 
properties. For example, it follows from (3) and (5) 
that 

(6) 

The recursion relations (4) for the st) imply the 
following recursion relations for the B~ : 

Bi! = 1, B~ = TK(b) = reb + K)tr(b), 

B~ = (b + K - 1)B~=~ + B~-\ 0 < N < K. 

These, in turn, lead to 

cK = a[(_J_)c~1 + (J + 1 )CK-1] 
J 2J + 1 J I 2J + 1 J+1 

+ (b + K - l)Cf-t. 

When considering residues, we are interested in 
CfCa, b) evaluated at aK and bK determined by the 
pole condition 

IX(S) = K. 
This means 

a K = al + (K - 1)/2, bK = bl - (K - 1)/2, 
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where 
al = -i(oco + 4OC'#2 - 1), 

bl = H3oco + 4OC'#2 - 1), 

and # is the particle mass. 
For our purposes in the next section, it is useful to 

consider some general properties of the B§(bK) 
considered as functions of hI' First we write 

B~(bK) = bK(bK + 1)' .. (b K + K - 1). 

Now consider K even; i.e., K = 2k. Then 

and 

B~!(b2k) = (b l - k + t) ... (bl - t) 
X (b l + .i) ... (b l + k - t) 

= (b~ - t)(b; - t) ... [bi - (k - t)2]. 

The function is thus seen to depend only on even 
powers of bl . Furthermore, from Eq. (6), we see that 
if Kis even, B~(bK) will depend only on even or odd 
powers of bl according to whether N is even or odd. 

Now consider the case of odd K; i.e., K = 2k + 1. 
Then, 

and 

B~~t~(b2k+l) = (b1 - k) ... (bl - 1) 

X bl (b1 + 1) ... (b1 + k) 

= bleb; - l)(bi - 4) ... (bi - k2
). 

This is a function involving only odd powers of bl . 

Equation (6) again implies that B~(bK) depends only 
on even or odd powers of bl according to whether N 
is even or odd. 

III. POSITIVITY OF THE RESIDUES 

We look first at the leading trajectory. Here we 
desire to have 

C~(aK' bK) = y{{(a )K ~ 0, 

which is easily satisfied for all Kif 

a1 ~ O. 

This means we must require 

OCo ~ 1 - 4OC'#2. 

The first daughter trajectory gives us 

C~_I(aK' bK) = y{{-I(OK)K-1Bf(bK) ~ o. 
But the formulas of the last section easily provide the 
result 

so that positivity of the first daughter residues is 
guaranteed by taking 

bl ~ 0 or OCo ~ i - toc'#2. 

This is, of course, the same condition derived by 
Oehme.4 

Before considering additional trajectories, it is well 
to make some use of the properties of the B~ derived 
at the end of the last section. Basically, these proper­
ties allow us to write the residue in the form 

C-:f(aK' bK) = (aKlf-:f(ai, bi), K - J even, 

= (aK)Jblgf(ai, bi), K - J odd. 

The useful feature of this is that the factors in front 
of the functions /'J and gf are already positive under 
the restrictions developed for the leading and first 
daughter trajectory. Furthermore, ff and g'f are 
polynomials in the variables ak and bi, and they are 
positive for sufficiently large laKI or Ib1 1. This means 
that we will have positivity outside some region 
centered on b1 = 0, a1 = -(K - 1)/2, whose bound­
ary is determined fromf'f = 0 or g'f = O. The main 
task now is to determine to what extent these regions 
encroach on the quadrant 

(7) 

Let us now turn to the second daughter trajectory. 
Here we find that 

f K . = K! (b2 1 a2 _ K + 1) 
K-2 2! (2K _ 3)!! 1 + 2K _ 1 K 12' 

so that we have positivity outside the ellipses 

b2 + 1 (a + K - 1)2 = K + 1 
1 2K _ 1 1 2 12 

for K = 2, 3, 4, .. '. Numerical calculations show 
that the case K = 2 dominates in the quadrant of 
interest, so that we have positivity of residues for the 
first three trajectories in the quadrant (7) for points 
outside the ellipse 

(8) 

Note that the point a l = t, bl = t, which corresponds 
to Q(o = t and Q('#2 = 0, lies on this ellipse. This is just 
the well-known decoupIing of the 0+ daughter of the 
fO in 1T1T scattering in the limit of zero pion mass. 

For the third daughter we have 

K = K! (b2 .3 a2 _ K + 1) 
gK-3 3! (2K _ 5)!! 1 + 2K _ 3 K 4 . 

Thus we have positivity outside the ellipses 

b2 + 3 (a + K - 1)2 = K + 1 
1 2K _ 3 1 2 4' 
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for K = 3,4, 5, .... It is not difficult to show that 
none of these ellipses extends into tqe quadrant (7), 
and so no new restriction arises. 

The computational effort begins to become formid­
able when we consider daughters beyond the third. 
The fourth and fifth daughter trajectories have 
residues depending upon the functions 

K K! 
f K-4 = 4! (2K _ 7)!! 

x [(b2 _ K + 1)2 + 6 a2 (b2 _ K + 1) 
1 4 2K _ 5 K 1 1,2 

+ 3 a4 _ (K + 1)(5K + 4)J (9) 
(2K - 5)(2K - 3) K 120 

and 

K K! 
gK-5 = 5! (2K - 9)!! 

x [[b 2 _ --.!L(K + 1)]2 + 10 a2 (b2 _ K + 1) 
1 12 2K _ 7 K 1 4 

+ 15 a4, _ (K + 1)(5K + 2)J. 
(2K - 5)(2K - 3) K 72 

(10) 

It is not too difficult to show that Eq. (10) does not 
give rise to any boundary curve extending into (8). 
For Eq. (9), however, the cases K = 4, ... ,9 do 
produce boundaries entering (8). Tedious numerical 
checking shows that none of these boundaries gets 
outside the ellipse (7) in this quadrant, so that in fact 
no new restrictions on the parameters are required for 
positivity of the fourth and fifth daughter residues. 

IV. DISCUSSION 

The investigation outlined in the last section makes 
it seem a reasonable conjecture that the simple Venez­
iano function has positive residues for parameters in 
the region described by (7) and (8). This region is 
shown in Fig. 1. If we also require that (I.' fl2 be non­
negative, the region is further restricted as shown. We 
have, in fact, shown that this region suffices for the 

b, =0 

FIG, 2. Region of positive residues for the first six trajectories in the 
(rxo, rx.' fl2) plane. 

positivity of the residues of the first six trajectories 
(see Fig. 2). It is clear that the brute force approach of 
the last section eventually becomes unworkable and 
is not suited to the study of trajectories beyond the 
fifth daughter. Our formulation of the problem, 
however, reduces it to a study of the positions of 
zeros of certain polynomials, the!"!{ and g"!{. There 
exists a considerable classical literature on this sub­
ject, which provides some hope of an eventual 
solution. 

APPENDIX 

The discussion of the text is based upon the special 
form (1). However, in applications the more general 
form 

v'v p(<x(S), <x(t» == r(N - oc(t»r(N - (I.(S» 
. r(N + P - <x(S) - (I.(t» 

with P ~ N (Al) 
is often used. We shall indicate here how the partial 
wave expansion above can be extended to (AI). 

From the properties of the gamma function, we 
have 

V (X, Y) = f'(N - Y) . r(N - X)r(P - Y) 
N.P rep - Y) r(N + P - X _ Y) 

which, after some manipulation, gives the general 
partial fraction expansion 

V
N 

p(X Y) = (_I)N-P i r(Y - P + K) 
• , K=l r(K)r(Y - N + 1) 

x (N + K ~ 1 - x), 

FIG. 1. Region of posi­
tive residues. The first 
six trajectories have pos­
itive residues for aI, bl 
in the first quadrant out­
side the ellipse shown. 
Only in the shaded 
region is rx' fl2 positive as 
well. This region of 
positivity is shown in 
Fig. 2 plotted in the 
(rxo, rx' fl2) plane. 

According to the definition (2), the residues are 
a, proportional to 

TK,(Y - N + 1), where K' = K + N - P - 1. 

Since we identify (I.(t) with y, the formulas of the text 
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are modified by changing K to K' and CXo to 0(0 -

N+1. 
Since the forms 

r(N - X)r(n - Y)/r(L - X - Y), N =F n, 

have been shown7•8 to be linear combinations of terms 
of the type (AI), we need not consider them further. 
The formulas derived here yield the partial wave 
expansions of the most general Veneziano amplitudes. 
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A complete set of angular functions for the four-body problem is given. Such functions form the basis 
for irreducible representations of the orthogonal group 0 9 , reduced according to the chain O. ::::> O! x 
0: x 0: ::::> 0 3 ::::> 0 •. The transformation properties of the functions are given and hence a matrix 
representation of the permutation group on four objects is explicitly specified. The reduction of this 
representation yields functions suited to Bose-Einstein or Fermi-Dirac statistics. . 

1. INTRODUCTION 
In 1965 the method of k-harmonics was used by 

Dragtt to obtain a complete set of angular functions 
for the three-body problem. The motivation for the 
new technique was a desire to treat all of the particles 
on the same footing. The invariance group of a free 
3-particle system in the center of mass is the orthog­
onal group in six dimensions, 0 6 , Owing to the 
difficulty of the reduction of 0 6 with respect to the 
actual rotation group of the three-particle system, 
Dragt was led to consider inner automorphisms of 
0 6 generated by operators of the permutation group. 
He found that there exists a subalgebra of the 0 6 Lie 
algebra with the remarkable property that each of the 
operators of this subalgebra commutes with the 
operators of the alternating subgroup Aa C Sa. This 
(As-commutative) subalgebra is just the Lie algebra of 
the group of three-dimensional unitary matrices SUa. 
Hence, SUa became the "Aa-democratic" subgroup of 
0 6 , and Dragt obtained his complete set of functions 
through reduction of SUa according to SUa:::> Oa :::> 
O2 , where Oa and O2 are the three- and two-dimen­
sional rotation groups of the system. 

In the general nobody case, the significance of the 
word "k-harmonic" is understood through a group 
theoretical analysis of the system as carried out by 
Levy-Leblond and Lur~at.2 The n-particle phase space 
has a spherical structure, and, in the three-particle 
case, the group 0 6 comprises the set of rotations 

connecting all points of the six-dimensional, three­
body phase space sphere. 0 6 is therefore "transitive" 
on the three-particle phase space. Further, Levy­
Leblond and Lurcat have shown that, in the n-particle 
case, any group transitive on phase space [3n - 4 
sphere in 3(n - 1) dimensions] may be taken as the 
starting group of the chain, e.g., for n = 3, SUa 
is transitive on the 5-sphere of three-body phase 
space. 

If one assumes a polynomial form, homogeneous 
and of degree k, for the basis functions, SUs tensor 
traces are equated to zero by requiring that the poly­
nomials satisfy the six-dimensional Laplace equation, 
and the quantum number k describes the simultaneous 
localization of the three-body system.s This is useful 
since k gives information about a "global" or true 
"three-body" property of the state [as opposed to 
earlier schemes which rely on a description of the 
system through a (2 + 1) particle state]. 

In the present work we follow the "global" method 
of Levy-Leblond and Lurcat to obtain a complete 
set of basis functions or k-harmonics for the case of a 
free, equal mass, four-particle system. The resulting 
basis functions form a complete set on the nine­
dimensional spherical phase space carrying symmetric 
representations of the orthogonal group 0 9 , Since 
there are no transitive compact, connected Lie groups 
other than OSn-S in the case of n-even,2 n > 2, we 
must use 0 9 here. 
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In the general nobody case, the significance of the 
word "k-harmonic" is understood through a group 
theoretical analysis of the system as carried out by 
Levy-Leblond and Lur~at.2 The n-particle phase space 
has a spherical structure, and, in the three-particle 
case, the group 0 6 comprises the set of rotations 

connecting all points of the six-dimensional, three­
body phase space sphere. 0 6 is therefore "transitive" 
on the three-particle phase space. Further, Levy­
Leblond and Lurcat have shown that, in the n-particle 
case, any group transitive on phase space [3n - 4 
sphere in 3(n - 1) dimensions] may be taken as the 
starting group of the chain, e.g., for n = 3, SUa 
is transitive on the 5-sphere of three-body phase 
space. 

If one assumes a polynomial form, homogeneous 
and of degree k, for the basis functions, SUs tensor 
traces are equated to zero by requiring that the poly­
nomials satisfy the six-dimensional Laplace equation, 
and the quantum number k describes the simultaneous 
localization of the three-body system.s This is useful 
since k gives information about a "global" or true 
"three-body" property of the state [as opposed to 
earlier schemes which rely on a description of the 
system through a (2 + 1) particle state]. 

In the present work we follow the "global" method 
of Levy-Leblond and Lurcat to obtain a complete 
set of basis functions or k-harmonics for the case of a 
free, equal mass, four-particle system. The resulting 
basis functions form a complete set on the nine­
dimensional spherical phase space carrying symmetric 
representations of the orthogonal group 0 9 , Since 
there are no transitive compact, connected Lie groups 
other than OSn-S in the case of n-even,2 n > 2, we 
must use 0 9 here. 
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We note further that, even in the case of three 
particles, SUs is not "Sa-democratic," but "Aa­
democratic." This idea leads to a study, in the four­
body case, of the subgroups of S, and application of 
the "democracy" concept to subgroups of 0 9 , 

Hence, one arrives at the chain 0 9 ::::> O~ X O~ x 
0: ::::> Os::::> OZ.4 

In Sec. 2, center of mass variables are defined and 
the infinitesimal generators for the groups 0 9 , 

O~ x 0; x O~, Os, and O2 are written out in terms of 
them. In this section we also see that the Q~ x 
0; x 0: subgroup is "V,-democratic." 5 

In Sec. 3 we construct the required basis functions, 
distinguished by the eight quantum numbers {k, s, iI' 
Iz, 13 , m1 , mz, ms}. (Of course, the coupling of the Ij 

to get a total angular momentum label L, M is 
equivalent to the reduction of O~ x 0; x 0: with 
respect to 0 3 ::::> Oz.) The functions are constructed as 
an O~ X O~ x O~ scalar polynomial piece, homo­
geneous of degree k, multiplied by a product of three 
Y1j.mP);, 1>;) functions. The requirement that the 
whole function satisfy nine-dimen~ional Laplace 
equation is equivalent to restricting ourselves to the 
symmetric representations of 0 9 , The 0 9 label is k, 
i.e., its value is simply related to the eigenvalue of the 
quadratic Casimir operator of 0 9 , Our eighth label, 
s, was discovered through the recursion formula 
which results from the requirement that the functions 
satisfy the nine-dimensional Laplace equation. Solu­
tions denoted in this way possess simple transforma­
tion properties under the group V, and the (23) 
interchange operation. This is helpful since any of the 
operators of S, can be written as a product of opera­
tors from V,, the (23) operator, and the (123) cyclic 
permutation. 

In Sec. 4 we study the problem of the construction 
of operators which commute with the generators of 
the O~ x 0; x 0: subgroup of 0 9 , and demonstrate 
that there are no "S,-democratic," independent, 
eighth operators which can be constructed from the 
elements of the Lie algebra of 0 9 , 

In Sec. 5, a matrix representation of S, is given in 
terms of the solutions of Sec. 3. This matrix repre­
sentation may subsequently be reduced, and states 
obeying Bose-Einstein and Fermi-Dirac statistics 
constructed. 

In Appendix A sample functions are given. In 
Appendix B we calculate the number of S,-symmetric, 
angular momentum zero states. 

The functions given here are useful for the deter­
mination of the. binding energy and wavefunctions of 
a bound system of 4-particles and for concrete 
calculations in the case of 'He. 

2. CENTER OF MASS COORDINATES AND 
INFINITESIMAL OPERATORS 

Consider a four-particle, equal mass6 system with 
r i the position vector of particle i in the laboratory 
system. The problem of finding a suitable transforma­
tion into the center of mass has been discussed by 
Levy-Leblond.' He has shown that a useful set of 
c.m. variables are 

;1 = !(r1 + r4 - r2 - ra), 

;z = !(r2 + r, - r1 - ra), 

;a = !(rs + r, - r1 - rz), 

;, = t L~r;. 

The free Hamiltonian operator becomes 

liZ ( OZ OZ 02
) 

H = - 2ft o;i + o;~ + 0;; . 
We now form a 9-vector of position 

(1) 

(2) 

(3) 

Considering the group of 9 x 9 orthogonal matrices 
acting on p, through matrix multiplication, we see 
that H is a 9-scalar and therefore has Ou as its fulf 
symmetry group. 

The Weyl infinitesimal generators for the 0 9 

group may be taken as 

Aia;iP = i(~ilX o:;P - ~iP a~i'} (4) 

Here ~ilX is the ith component of the otth relative 
position vector. The AilX;iP satisfy the commutation 
relation 

[Aia;ill, Ai,IX';i'p'] = i(blXlX,bii'AiP;i'p' + bpll,bii,AilX;i'a' 

- bpa,bii,AilX:i'Il' - blXf/,bwAif/:i'IX')' (5) 

Elements of the direct product subgroup O~ x O~ x 
O~ are simultaneous rotations in each of the three­
dimensional spaces, one for each vector ;j' Hence, 
we have 

:.H.(Oi x 0; x O~)p-+ p' = [~1 ;z ~][::]. (6) 

o 0 Rs ;a 

The matrices {Rj : j = 1, 2, 3} are 3 x 3 orthogonal. 
Obviously, if Rl = Rz = Rs, we have a rotation of the 
total four-body system in the center of mass. The 
infinitesimal generators of 0: are 

fai = iEipyApa;ylX' i = 1,2,3. (7) 

The rotation group of the 4-particle system in the 
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center of mass, Oa, is generated by the three operators 
a 

Li=!I~i' i=I,2,3. (8) 
~=1 , 

The utility of the variables ;j can be seen by 
considering the transformations of the ;j induced 
by the action of the operators of the permutation 
group S4' 

S4 has 4! elements, each of which may be expressed 
as a product of elements from the set 

G = {i, (23), (123), (24)(13), (14)(23), (34)(12)}, (9) 

where (ijk··· t) means the cyclic permutation 
e~~!::;D. The operators {i, (24)(13), (14)(23), (34)(l2)} 
are a subgroup of S4 which we label V4 • We find, for 
example, that 

[(24)(13) + (14)(23) + (34)(12)]p = -po (10) 

Hence, defining 

~ == [(24)(13) + (14)(23) + (34)(12)] (11) 

gives ~ as the nine-dimensional parity operator. 
The product functions YI:'I(~I) Yz':2(~2) Yl~3(~a) 

are bases for the irreducible representations of the 
O~ X O~ X 0: group. 

Since the Weyl infinitesimal generators of O~ X 

. O~ X 0: all commute with the operators of V4 , 

basis functions for the irreducible representations of 
O~ X O~ X O~ can change at most by a phase when 
acted upon by the operators of V4 • One easily has 

(24)(13) Y:';I(~I) Y~2(~2) y~3(t3) 
= (- )!I+!3y::'I(~I) y~2(~2) y~3(~2)' 

(14)(23) Y;~I(~I) Y~2(~2)y~3a3) (12) 

= (-)'2H3Y!71(~I)Y~2(~2)y~3a3)' 

(34)(l2)Y:';I(~I)yt;'a2)Y~3(~3) 
= (-)h+!2Y!71(~I) Y~'(~2) y~3aa), 

and 
L Y::'I(~I)Y~2a2)y~3(£a) 

= [( _ )'1+!3 + (_) 1'+!3 + ( _ )'1+!2] 

X Y::'lal) Y~2a2)Y~3aa). (13) 

3. A COMPLETE SET OF ANGULAR FUNC­
TIONS FOR THE FOUR-BODY PROBLEM 

This section will be divided into three parts. First, 
starting from the free Schrodinger equation of four 
noninteracting particles, we show the necessity of 
introducing harmonic polynomials in 9-space. We 
write the Laplacian in a spherical coordinate system, 
and obtain a recursion formula relating coefficients 
of the homogeneous polynomials. 

Next, we solve the 11 = 12 = /a = 0 case, in­
troducing the needed label. We also derive the 

transformation properties of the solutions under the 
(23) interchange. 

Finally, following the technique of the II = 12 == 
la = 0 case, we write the complete set of angular 
functions for arbitrary Ii' and obtain the transforma­
tion properties under (23). 

A. The Schrodinger Equation 

The free wave equation in the center of mass is 

- :; (vt + Via + Vi3)1p(;I, ;2, ;a) 

= Elp(;I, ;2, ;a), (14) 

where V~ is the usual 3-Laplacian of vector ;j' 
The solutions, 11'(;1';2' ;J, may be expanded jn 
terms of the angular functions of the 9-sphere 

11'(;1' ;2' ;a) = !Rip)Uk(~I, ~2, ~a), (15) 
k P P P 

where p is the length of the nine-position vector 

2 "a ):2 p = kl r,j' (16) 

The Uk are the required angular functions. They are 
related to the solutions of the 9-Laplace equation by 

(17) 

where 

p k(;I, ;2, ;3) = ! anln2n3(l1, 12 , la)~;I~~2~~3 

X Y::'lal)Y~2(~2)Y~3(£a). (18) 

In (18) the sum is over each nj such that 

(19) 

k is the degree of the O~ X O~ X O~ scalar poly­
nomial piece. 

The anln2n3(l1, 12 ,/3) of (18) are related by the 
requirement that P/;I, ;2, ~) be harmonic. Using 
this fact and Eq. (14) gives 

! ~ 8 ~ R () (E _ k( k + 7») R ( ) = O. (20) 
8d P d kP + 2 kP 

P P P P 

Hence we must solve 

~9Pk(l;I' ~2' ~3) = O. (21) 

The Laplacian now has the form 
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We label the k-polynomial part by 

a>k.11.12.IS(t t t) - ~ (I 1 1 )tnltn2tns ... '>1' '>2' '>a - k anln.nS 1, 2, a '>1 '>2 '>a . 

(23) 
Now Eq. (21) becomes a differential equation for 
;j'k.I, .I •. ls(;l, ;2, ;a): 

~ (.!. ~ ;~ ~ _ Illj + 1»):fk.h.I •. 13(; ; t) = 0. ,t1 ;~a;j '0;,;; 1,2,'>a 
(24) 

From these results we have 

L an,n.n3(l1, 12, la) 
nln2n 3 

X ([n1(n 1 + 1) - 11(11 + 1)];~1-2;~2;;3 
+ [n2(n 2 + 1) - 12(12 + 1)];~l;~.-2;;3 
+ [na(na + 1) - lila + 1)];f';~';;S-2} = 0. (25) 

Equating to zero the coefficients of terms oflike form, 
we get the required relation between the anlll.n3(11, 
12 , la), 

[n1(n1 + 1) - 11(/1 + 1)]an,1l.1ia 

= - [(n2 + 2)(n2 + 3) - 12(12 + 1)]an,-2.n.+2.1Ia 

- [(na + 2)(na + 3) - la(/a + 1)]an,-2.n •. 1Ia+2· 
(26) 

B. Solution of the 11 = 12 = la = 0 Case 

Specializing to the case of 11 = 12 = la = 0, one has 
the recursion relation 

n1 (n1 + 1 )an 1I.n = - (n 2 + 2)(n2 + 3)an -2 11 +2 n 1 S 1 • 2 • 3 

- (n3 + 2)(n3 + 3)an,-2.n •. na+2' (27) 
It follows from (27) that 

anln.na = 0, n1, 112 , na = odd, (28) 

and that the aO.n2.na are all independent. Here 
;j'k(;l' ;2' ;3) is the complete function of (18), and the 
only condition which we have at our disposal for 
determining the coefficients is Eq. (27). 

The ;j'k(;1';2' ;a) are eigenfunctions of seven 
operators and the degree of degeneracy is the number 
of solutions to the equation 

n2 + na = k, (29) 

with n2 , 11a , k being even. This is just k/2 + 1. 
We may express the an ,n. 1I a in terms of the inde­

pendent aOn•na by iterating (27): 

a'~ln2n3 
= _n'i-! (111/2)! (112 + 111 + 1 - 2j)! (l1a + 1 + 2j)! 

j=O j! (nl/2 - j)! (111 + 1)! (112 + 1)! (l1a + 1)! 

X ao.n.+n,-2j.na+2j 
_ n,!-t(n1/2)! (na + n1 + 1 - 2j)! (11 2 + ~ + 2j)! 

j=O j! (n1/2 - j)! (n1 + 1)! (n2 + 1)! (na + 1)! 

X aO.n.+2j.na+n,-2j, (30) 

and 

a~ln.na 
= nf(n1/2)! (n 2 + n1 + 1 - 2j)! (na + 1 + 2j)! 

i=O j! (n 1/2 - j)! (n1 + 1)! (n 2 + 1)! (na + 1)! 

+ n'!-I(n1/2)! (n3 + 1 + n1 - 2j)! (n2 + 1 + 2j)! 

j=O j! (nl/2 - j)! (n 1 + I)! (n2 + 1)! (na + 1)! 

(31) 

In (30) and (31) the superscript (e, 0) means that n1/2 
is (even, odd). 

We could at this point construct a new operator 
from the elements of the 0 9 Lie algebra (see Sec. 4). 
Then the requirement that the operator so constructed 
be diagonal on ;j'k( ~1' ~2' ~3) would break the k/2 + 1 
fold degeneracy. Instead, however, we proceed as 
follows: The independent coefficients may be written 
as {au - s•s : s = 0,2, ... ,k}. By putting aO•k - s •. , to 
unity for some particular s and setting all other 
ao.n •• ns to zero, we obtain a polynomial which is 
specified by k and s. Since s takes on a different 
value for each degenerate state, it may be taken as our 
missing label. 

We now work out the transformation properties of 
;j'k.s( ~1' ~2' ~3) under the (23) operator. Since 
operators of V4 change ;j at the most by a sign, all 
;j'k'S(~l' ~2' ;3) are invariant under V4 . Hence, we 
say loosely that s is "V4-democratic." Therefore, we 
need only determine the transformation properties of 
;j'k.s under Hie operators (23) and (123). (123) is 
worked out later. However, since the action of (23) 
is determined by the 2-3 interchange symmetry exhib­
ited in Eqs. (30) and (31), we work it out here. 

According to (27), (30), and (31), we have 

k 

anln.n3 = L Cs,(n1 , n2, na)aO.k- S' .s" (32a) 
.'=0.2 ... · 

k 

an ,n3n.= L C.,(n1,n2,na)aO,S'.k_S" (32b) 
8'=0.2,'" 

U sing the definition of the ;j'k and ;j'k.8, one then has 

;j'k(~l' ~2' ;a) 

and 

= L (~c.,(nl' n2, na)aO,k_S' ,s.) ;f'~~';:3 (33) 
nln2na s 

;j'k'S(~l' ;2, ~3) = L C.(nl , n2, n3)~f'~~·~;3. (34) 
nln2 fl a 

But ;j'ka1' ;2, ~3) may also be written as 

~ a tn, tn3 tn. 
k nlnsn2'.il ~2 ~a , 
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giving 

!fkU2' ~3)~1' 

Comparing (36) with (34), we have the sought-for 
result 

= 1 ( i Cs,(n1 , n2 , n3)aO•S " k -"') ~~'~~3~;'. (35) 
nln2na 8'=0,2,"· 

We may obtain the !fk.S( ~1' ~2' ~3) explicitly by 
using Eqs. (30) and (31) along with the requirement 
that aO•k- s•s be unity: 

Hence, 

!fk.k-S = 1 CsCn1,n2,n3)~~'~;3~:2. (36) 
nln2na 

!fk.S('l, ~2' ~3) 

= _ IO (~ . (n:/2)! (k - s + 1)! (s + 1)! e(n: - 2 - 4j1). ~~,~~-n,-s+2;'~~-2h 
n, ,,=011! (n1/2 -11)! (n1 + 1)! (k - n1 - s + 211 + 1)! (s - 211 + 1)! 

+ (k~/2 (n1/2)! (s + I)! (k - s + I)! e[n1 - 2(2j2 + 1)] ~n'~k-s-2;2~.+2i.-nl) 
;.=0 j2! (n 1/2 - j2)! (n1 + 1)! (k - s - 2j2 + 1)! (s + 2j2 _ n1 + 1)! 1 2 3 

+ 1e (! . 5n1/2)! (k - s + 1)! (s + 1)! ~(n1 - 4j1). ~~,~~-n'-S+2it;:-21' 
n, 1'=011! (n1/2 - 11)! (n 1 + 1)! (k - n1 - s + 211 + 1)! (s - 211 + 1)! 

+ (k~/2 (n1/2)! (s + 1)! (k - s + 1)! e[n1 - 4(j2 + 1)] e'~-.-2i.e+2;.-nl). (38) 
i.=O j2! (n1/2 - j2)! (n 1 + 1)! (k - s - 2j2 + I)! (s + 2j2 - n1 + 1)! 1 2 3 

In (38) (0, e) requires a sum over n1/2 (odd, even). Equation (38) gives the complete solution for the case of 
II = 12 = 13 = L = M = 0. 

C. Complete Set of Angular Functions 

We now obtain a complete set of four-body states for arbitrary Ii by the method of the previous section. 
Consider again Eq. (25); 

1 an ,n2n3{[n1(n 1 + 1) - 11(11 + 1)]~~,-2~:2~:3 + [nln2 + 1) - 12(12 + 1)]~~,~:.-2~:3 

We observe the following: 
(a) The only nonzero coefficients are 

{al,+i,.12+i •. 13+i3:h ;;::: O,h ;;::: O,h ;;::: 0,j1 + j2 + j3 = k - 2~ Ii}; 

(b) the coefficients al,.12+i •. 13+i3 are all independent. 
Equation (26) now reads 

[(11 + j1)(11 + j1 + 1) - 11(11 + 1)]a1,+iI.12+hI3+13 

= - [(12 + j2 + 2)(12 + j2 + 3) - 12(12 + 1)]a1,+it-2.1.+i.+2.13+13 

Iterating (39) gives 
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il-2-2tl 

il/4-! (jI/2)! IT [(j2 + 2 + P)(j2 + 3 + p + 212)] 
o ~ :P-0.2.· .. 

ah+il.l.+i •. la+is = - '" -----'=~-h--2----------
tr=O U1/2 - t1)! tl! II [Ul - P)(jl - P + 1 + 211)] 

:P=0.2 ... · 

x (Ji.:..[(j, + p)(j, + p + 1 + 21,1l)a"., .. H.+,._" •. ;.+, .. ", 

1 (tl = 0) 
il-2-2t. 

il/4.-! UI/2)! II [Us + 2 + p)(js + 3 + p + 213)] 
~ :P=0.2.· .. 

'" il-2 
t.=o II [(jl - P)Ul - P + 1 + 211)]UI/2 - t2)! t2! 

:P=0.2 ... · 

x (:P2J!~ ... [U2 + P)(j2 + P + 1 + 212)])a11.Z2+i2+2t2.13+i3+il-2t2' 

1 (t2 = 0) 

Here the superscript (0, e) refers toh/2 (odd, even). Defining 

K = k - !~ Ii 

and fixing aZ1.1.H-s.13+8 as unity while the remaining independent coefficients are set equal to zero gives 

2t1>0 

787 

(41) 

(42) 

X :P=~I...l(s - 2tl + p)(s - 2tl + P + 1 + 21s)] 0Ul _ 2(2tl + l))eil+he~2+K-h-8+211eia+s-2t1 
1 (h = 0) 

i1-2+2t , 
(K-s)/2 ( . /2) II [(2 + p + s + 2t2 - jI)(3 + p + s - jl + 2t2 + 21s)] +! it :P-0.2 ... · . 

1 =0 t 11-2 

• 2 II [Ul - P)(jl - P + 1 + 211)] 
:P=0.2 ... · 

21,>0 

II [(K - S + 2t2 + p)(K - S + 2t2 + P + 1 + 212)] 
:P=2.4 ... · x 

1 (t2 = 0) 

X 9[j. - 2(21, + 1) 11\'H'I~'+"-'-"'"l'H-M"'J 

[

8/2 ( . /2)h-rr2t1[(K - 5 - j1 + 2t1 + 2 + p)(K - S - jl + 2tl + 3 + P + 212)] +!e ! 11 ,;;.,1>==0"".2'"-.·_" _____________________ _ 

ill #0) tl=O t ;'-2.. 
1 II [(11 - P)(h - P + 1 + 211)] 

:P=0.2 ... · 

211>0 

x II [(5 - 2tl + p)(s - 2tl + P + 1 + 21s)] 
:P=2 ..... · 

1 (tl = 0) 
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h-2-2t2 

+ (KI,) 12 (jI/2) ..::;.21.....;J:..:..::r.2:.:... .. _ .. [(_2_+_P_it+ __ 2_S_-_j_l _+_2_t_2)_(3_+_p_-_1_'I_+_s_+_2t_2_+_2_13)_] 

to=O t2 IT [(jl - P)(j1 - P + 1 + 211)] 

21=0.2 ... · 
2to>0 

x II [(K - S - 2t2 + p)(K - S - 2t2 + P + 1 + 212)] 0[' _ 4( 1)] 
21=2.4.·.. 11 t2 + 

1 (t2 = 0) 

X l:il+hI:12+K_S_2tOI:13-il+s+2tO] + o. I:hI:12+K_.SI:13+S} yml(E ) ymo(~ ) ym3(E ) 
"1"2"3 3,,0"1"2"3 II "1 10 "2 1s"3' (43) 

In Eq. (43) the superscript (0, e) on the summation 
indicates that j1 is to be summed over its values such 
thatN2 is (odd, even). The notation Ct;2) is a binomial 
coefficient, and the matrix II II symbol means, e.g., 
take 1 when te) = ° or take the upper form when 
tm =;f= 0. 2 

We note the following which are easily derived 
from Eqs. (25) and (39): 

(c) The A are all even. (This foHows from the fact 
that the Laplace operator reduces the degree of a 
homogeneous polynomial by 2.) 

(d) K is always even. 
(e) The spectrum of s is 0,2,' .. ,K or Kj2 + 1 

values. [Obviously s here is a generalization of that of 
Sec. 3A, and the solutions of 3A are contained in Eq. 
( 43).] 

Due to the (23) symmetry expressed in (40) and (41), 
we have as before 

(23);fk.s = ;fk.K-S. (44) 

Equations (43) and (17) give the desired angular 
functions for the four-body problem explicitly. 

4. A COMPLETE SET OF OBSERV ABLES FOR 
THE FOUR-BODY PROBLEM 

We now study the construction of operators which 
commute with the Casimir operators from the chain 
Of!::::> O~ x oi x oi::::> 0 3 ::::> O2 , and show that 
there are no missing S4 invariant operators. 

The chain 0 3 ::::> O~ X O~ x 0; ::::> 0 3 ::::> O2 gives 
six Casimir operators: 

Ou: A2 = I~A;~;iP' 
i~iP 

O~ X 0; x 0::1; = I~ 1;~, u- = 1,2,3, 

03: L2 = I~L;, 
~ 

The coupling of the three angular momenta requires 
the use of an intermediate coupling operator. This 
operator is defined by 7.8 

(45) 

The fact that one more operator is required to com­
pletely reduce Ou means that the 0 9 representations, 
when restricted to the O~ x O~ x 0; subgroup, are 
not multiplicity free. Hence, an operator is needed 
which differentiates between equivalent O~ x 0; x 0; 
representations within a given 0 9 representation. 

Since 0 3 is a subgroup of O~ x O~ x O~, we need 
only find an operator which commutes with the 
infinitesimal generators of O~ x 0; x 0;, and, since 
all infinitesimal generators of the 0 9 Lie algebra 
commute with A2, we consider only those operators 
which, when constructed from the Airt;iP' are invariant 
under O~ x 0; X O~ rotations. The Weyl infinitesimal 
generators of Ou form a skew-symmetric, 9 X 9 
matrix 

[

All A12 

[Ai~;jP] = Au A22 

Alll A32 

where the submatrix A"T is 

A"T = [Ai";;T]' 

(46) 

(47) 

O~ X 0; X 0; rotations induce transformations on 
the elements of the 0 9 algebra according to 

(48) 

Due to the orthogonality of the R j submatrices, we 
are led to consider quadratic forms in the Ai~;jP' 
Such forms are conveniently generated in terms of 
traces of products of the matrices A aT • 
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Using equation (48), one may demonstrate ·that 
Tr [(A"TA",)n] are O~ x O~ x O~ invariant operators. 
Using this result combined with the permutational 
properties of the elements Aia;ifJ' one finds to second 
order in the Aia;ifJ 

0(2) = Tr (A12A12) + Tr (A12A12) + Tr (A2SA2S) 

+ Tr (A2SA2S) + Tr (A1SA1S) + Tr (Al3A1a), (49) 

as an O~ x 0; x O~ invariant operator which is 
symmetric with respect to particle permutations. 
However, it is easily checked that 

(50) 

and 0(2) is not independent. 
One can go on to search for higher~order invariants 

by the same technique, but to no avail, as we now 
show. 

The solutions for k = 2, II = 12 = la = 0 are 
expressed by 

~2 = a020~~ + ao02~i - (a002 + a020)~~' (51) 

We require 
0~2 = W~2. (52) 

The eigenvalue equation (52) must give a nontrivial 
relation between the coefficients a020 and a002 ' breaking 
the degeneracy. Since 0 is an 84 invariant operator, 
we have 

(53) 
and 

(123)~2 = exp e~ni)~2. (54) 

It is easily shown that (53), (54), and (51) are 
incompatible. Hence, we have the general result: 
There are no independent, O~ x O~ x O~ and 84 

invariant operators for the four-body problem in the 
chain 0 9 ;:, O~ x 0; x 0; ;:, Oa. 

We now ask: What is the maximum 8 4 symmetry 
which an independent eighth operator can exhibit? 
To answer this, we first note the basic result that 
O~ x 0; X 0; invariant operators may only be 
formed from {~i· ~i' Vi;, ~i· Vs)' j = 1,2,3. 
Hence, any O~ x 0; x O~ invariant operator is 
Vrdemocratic. Therefore, we study an operator such 

(a) ASi = 0 if (12 + K - j - (1)(2 is not integer; 

(b) if (12 + K - j - (1)/2 = odd, 

h+K-i-2-13-S 

that 
(23)0(23)-1 = ±O (55) 

and 
(123)0(123)-1 = ±O. (56) 

It is obvious, however, that Q2 is then an S4 invari­
ant, implying that 0 will not break the degeneracy. 
Therefore, one must choose either (55) or (56), 
implying that simple transformation properties under 
(23) necessarily imply complicated properties with 
respect to (123) and vice versa. Therefore, we have 
justification for the solutions of Sec. 3 which have 
simple transformation properties under (23). 

5. TRANSFORMATION PROPERTIES UNDER 
PARTICLE PERMUTATIONS 

In this section we determine the transformation 
properties of the solutions contained in Eq. (43), 
under the action of the operators G, giving explicitly 
the matrix representation of S4 in the basis of Sec. 3. 

We begin by again dividing the general solution into 
a polynomial part and spherical-harmonic part 

(57) 

First consider the polynomial piece ~k.S(~l' ~2' ~a). 
From Sec. 3C we have 

(58) 

For the (123) cyclic permutation we write formally 
I( 

(l23)~k.S = L ASi~k.i· (59) 
i=0.2.··· 

One may determine the matrix elements Asi in the 
following way: Each distinct state ~k.8 was constructed 
by requiring that al,.I.+K-S.la+s be unity while the 
other independent coefficients were zero. We have 

~k.S(~l' ~2' ~a) = L ah+iI.12+i •. 13+ia~i'+iI~~2+i2~~3+i3 
ilia;. 
,,"0 + ~N~2+I(-s~i3+S. (60) 

Clearly, the term ~~1~~.+"-S~~3+S is unique to the 
particular ~k.S, so that on applying (123) to ~k.s we 
look for the coefficient of the term ~t'~~2+K-i~~3+i 
which is As;. We get: 

A •. = _ ([1
2 
+ K - j - 1

1
](2) p=TI.... [(p + 2 + la - 12 + j)(p + 3 + la + 12 + j)] 

, (I - I + ]/2 la+/C-;-h-2 
a 1 s II [(12 + K - j - 11 - P)(12 + II + 1 + K - j - p)] 

1>=0.2.· .. 
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13-/l+S 

x 1>Jl. .. [(11 - 13 + p)(11 + 13 + P + 1)] 0[l2 + K - j + 11 - 2(13 + s + 1)]0(11 - 13); 

1 (11 = 13 + s) 

(C) if (12 + K - j - 11)/2 = odd, 

IZ+K-S-/3-; 

x II [(13 - 12 + j + P)(l2 + 13 + j + p + 1)] 
1>=2.4.· .. 

1 (s + 13 + j = 12 + K) 

X O(j - 12 - K - 11 + 213 - 2 + 2S)O(l3 + j - 12); 

(d) if (12 - 11 + K - j)/2 = even, 
12+K-;-2- /3-S 

A = ([12 + K - j - 1
1
]/2) 1>J1... [(p + 2 + 13 - 12 + j)(p + 3 + 13 + 12 + j)] 

8; [1 _ I +]/2 1,+K-i-h-2 

3 1 S II [(12 + K - j - II - p)(12 + 11 + 1 + K - j - p») 
1>=0.2.· .. 

13-/1+8 

X 
II [(11 - 13 + P)(ll + 13 + P + 1») 

1>=2.4 ... · 
1 (11 = 13 + S) 

X 0(11 - 13)0(12 + 11 + K - j - 213 - 2S)0(12 - 11 + K - j - 1); 

(e) if (12 - 11 + K - j)/2 = even, 
2(/2+K-;-I)-/l-/a-S 

( 
[1 + _. _ 1 ]12 ) _II... [(2 + p + II - (3)(3 + p + 11 + (3)] A . = 2 K } 1/ __ ---'1>::.;:-""0.""2. ______________ _ 

8, [1 + x - s - 13 - j]/2 1.+K-i-!1-2 

2 II [(12 + K - j - 11 - P)(l2 + 11 + K - j - p + 1)] 
1>=0.2 ... · 

12+K-B-13-; 

X 
II [(13 - 12 + j + P)(l2 + 13 + j + p + 1)] 

1>=2.4 ... · 
1 (s + 13 + j = 12 + K) 

X 0(13 + j - 12)0(12 - 11 + K - j - 1)0(-12 - 11 + 21a - K + j + 2s - 4); 

(f) ASj = All-/s.12+K-11 = 1. 

Coefficients not found here are zero. with the AI 11m m m (T, L, M) the desired transforma-
128128 

We have in (58) and (59) (with the Asi determined) 
completely specified the transformation properties of 
the polynomial piece :fk.s under S4' 

We now work out the S4 transformation properties 
of the spherical harmonic part, considering the special 
case of L = O. 

We denote functions with eigenvalues {ft, l2' la, T, 
L, M} by X~Zj}a;), and functions which are obtained 
through the use pf standard coupling operators, e.g., 
12 by 'YllIS/'l.(~2)(~) We may write 12 luLM 1 • 

X1-11M<§j) 

= I Altlsl.mlfflaffl.(T, L, M)y;:I(£1)y~·(§2)y~3(€3)' 
ml1nams 

(61) 

tion brackets. Noting that T, the symmetric coupling 
operator, may be written 

(62) 

one has 

and 

( _Yl+m1 

AltlaI3mlmlm.(0, 0, 0) = ! (121am2mal'l - ml)' 
(211 + 1) 

(64) 



                                                                                                                                    

FOUR-BODY PROBLEM 791 

It now follows directly that ACKNOWLEDGMENTS 

(24)(13):X:~h~!3 = (-)h+!a :X:~h~2!3, (65) 

(14)(23):x:~~!t3 = (-y.+l3:X:~~~13, (66) 

(34)(12):X:~h~!3 = (_ll+l':X:~h~!3, (67) 

(23):X:~t~13 = ( - )'2+13-h:x:~~t3!2, (68) 

(123):X:~t~13 = :X:~~~!2. (69) 

We now summarize the results: 

(24)(13)P~~~!218(!;1' ;2' ;3) 

= ( - )h+l3p~~~!213(;1' ;2, ;3), (70) 

(14)(23)P~~~11.13(;1' ;2' ;3) 

= (-)'2+13p~~11213(;1' ;2' ;a), (71) 

(34)(12)Po~~11213(;1' ~2' ;3) 

= (- )h+Z'pk~11213 (;1> ;2' ;3), (72) 

(23)P~g~11213(;1' ;2, ;3) 

= (-Y2+13-h YoO~-8.hI312(;1' ;2' ;3), (73) 

(123)P~~~11.13(;1' ;2' ;a) 
K 

= I A8i[(l23)]P~&~hI2(;1';2' ;a)· (74) 
1=0.2 ... · 

Here 

p~~~1213(;1' ;2' ;a) 

= !}'kS(;l' ';2, ';a):.r;~h~13(gl' ~2' ~3)' (75) 

Equations (70)-(74) give us the full matrix representa­
tion of the permutation group S4 in our basis set for 
the important case of L = 0. 

CONCLUSION 

A complete set of basis functions for the four­
particle problem has been developed. The basis was 
given in terms of homogeneous, harmonic poly­
nomials, and the properties of the polynomials under 
the permutation group was determined. 

Construction of the eighth operator, "missing" 
from the chain 0 9 :::> O~ x 0; x O~:::> Oa:::> O2 , 

was discussed in detail including proof that an S4-
symmetric, independent operator is impossible. 

In Appendix A sample states are given, and in 
Appendix B we calculate the number of symmetric 
L = ° states of a given k. 

The solutions given may be used for determination 
of the wavefunctions and energies of a four-particle 
bound system, hence lending themselves to calcula­
tions of4He.9 They may also be used directly to investi­
gate symmetries and selection rules in the case of a 
single elementary particle decaying into four identical 
particles. 

My first acknowledgment goes to Dr. R. D. Amado 
of the University of Pennsylvania whose guidance and 
help has proven invaluable in this work. Secondly, I 
would like to thank Dr. J. D. Louck of Los Alamos 
Scientific Laboratory for his helpful discussions, 
particularly concerning Sec. 4. 

APPENDIX A: DIMENSION FORMULA AND 
SAMPLE STATES 

The number of independent homogeneous poly­
nomial functions of degree k in nine variables is10 

9D[k) = (k + 8)!/k! 8!. (AI) 

Since the Laplacian reduces the degree of such 
polynomials by two, it imposes (k + 6)!/(k - 2)! 8! 
conditions on the coefficients. 'Hence, the number of 
harmonic functions of degree k is 

n(k) = (k + 8)!/k! 8! - (k + 6)!/(k - 2)! 8!. (A2) 

In Sec. 3 we determined that in {ks/1/2/smlm2ma} s 
takes on 1</2 + 1 values with K E {O, 2, ... , (k!:l)} 
depending on whether k is even or odd. The Ii are all 
possible solutions to 

I~ 'i = k - 1<. (A3) 
Hence, we obtain the following dimension formula 
for the basis of Sec. 3: 

N(k) = i ~ (k - P + 1) 
P=(~).(~).". !1.!2.13=0 2 

X (2/1 + 1)(2/2 + 1)(2/3 + l)dP '!l+la+la' (A4) 

The sum on P is over even (odd) values if k is even 
(odd). It is not hard to satisfy oneself that 

N(k) = n(k). (AS) 

Below we list all solutions of degrees 1, 2, 3, 4, and 
some of higher degree. 

k = 1, n(l) = 9 

p~!gg(;i) = ';ly;"l(~l) 
p~~:O(;i) = ';2 y;"2(~2) 

P~~~!(;i) = ';3y ;,,"aa) 
k = 2, n(2) = 44 

P20000(1:' ) _ /:2 /:2 
000 "i - ~2 - ~l 

P22000(1:' ) _ /:2 /:2 
000 "i - ~a - ~l 

P;?:;'~O(;I) = ~1~2 Y1'l(~l) Y1'2(£2) 
P~;oO~3(;I) = ~1;3Yi"lal)Yi"3(g3) 
P~~:~'<;,) = ';2';3Yi"2(~2)Y;"3a3) 

p20200(1:' ) _ /:2ym1(E) m100"i - ~1 2 ~1 

p~~:g(;i) = .;~y~2a2) 
P~g~:(;i) = ;:Y~"(£3) 
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P:':;'~mS<~i) = $1$2$ a Yf'l( ~1) Yf'2(! 2) Yf'S(! a) 

P:':!~O(~i) = ~l~~ Yf'l(!l) y':2(~2) 
P~~:;'S<~i) = $~~aY~2a2)Yf'3(~a) 
P:'l~;'3(;j) = $~~aYrl(tl)Yf'3(~a) 
P:'::!.(;j) = ~1~~Yf'l(~I) Yr3(~a) 
P~~~.(;j) = ~2~:Yf'2(t2) y~3(ta) 
P:'~;'~O(~j) = ~~$2 y~l(!l) Yf'2(~2) 
p=:::~gg(~i) = (~1~~ - 160$~)Yf'l(!I) 

P~~gg(~j) = (~1~; - 160$~)Yf'l(!1) 
p~,:!g(;j) = (-1~N~$2 + ~~)Yf'2(~2) 
P~~!g(;j) = (-~~$2 + $2$;)Yf'za2) 

P~g':!(~j) = (-~:~a + $:~a)Y;."3(~a) 
P~~~~(~i) = (-1f~~$a + ~:)Yf'3(~a) 
p=:::~gg(;i) = ~~y~l(!l) 
p~,:~g(~i) = $~Y~2(!2) 

P~g':!(~i) = ~:Y~3aa) 
k=4, n(4)=450 

n4.0000(l: ) _ t4 + t4 _ 1.1).t2t 2 
rOOO o,i - \02 \01 6 \01\02 

~~goO(~i) = ~:~: + 160~t - (~~~~ + ~:~;) 
PMOOO(l: ) _ t4 + t4 _ 1-i-t2t2 

000 o,i - \Oa \01 \Ol\Oa 

p:~gg(~i) = (~~~~ - t~f)Yrl(~l) 
ro,::g(;j) = (~~ - M~~~)Y~2(~2) 
P~g':~(~j) = (~:~; - ~i~;)Yr3(~a) 
p',!~gg(~j) = (n:; - H~)Y~l(~l) 

~!?:g(~j) = (~:~i - $:$~)y~2(!2) 
ro~'::(;j) = (;: - 1~~;~)y~3(~3) 

P~:;'~O(;j) = (~1~~ - ~~$2) Yf'la1) Yf'2(~2) 
P~::;'.(~j) = (~1~:;3 - Mr$a) Yf'l(~I) Yf'3(~2) 
P~~:;'3(;j) = ($~$a - %;:$2$a) Yf'2(~2) Yf3(~a) 
p!;:~O(;j) = (~1~:;2 - H~~2) Yf'1(t1) Yf'2(t2) 

p!;:~;',<;j) = ($1$~ - ~~~a) Yf'l(t1) Yf'3a a) 

P~~:;'3(~j) = ($:$2 - H~$2$3) Yf'2(t2) Yf'3(ta) 

p:!gg(~;) = efY~l(~I) 
l1~:g(;j) = e~Y~2a2) 
P~g~!(;j) = e:y~3aa) 

P~:;'~o(~j) = $~e2Y~l(~I)Yf'2a2) 
P~:~;'S<;j) = e~ea y~lal) Y;"3aa) 

P~:!~o(~j) = $le~Y~2(§2) Yi l al) 

P~:O°!a(~j) = $1~:y~3(£3) Y;"l(£l) 

P~~:!.(~j) = $2$=Y~3(£3) Y;"2(£2) 

P~~:;'.(~j) = $~eaY~2(£2)Y;"3(~3) 

P~;~!,<~j) = e:$:Y~lal) y~3(£3) 

P~~22!.(~j) = $:e;Y~2(~2) y~3(~S) 

P~;;'~m3(;j) = ~~~2eaY~l(tl)Y;"2(~2)Y;"3(~a) 

P~:!~m.(;j) = ~le;$5Yf'l(£I)Y~2(£2)Yf'3(£3) 

P~:;'~m3(;j) = $1$2~:Yf'l(~1) Y;"2(£2) y~3(£3) 

k>4 

P~!~~(;j) = (~1;~ - Hi + 3ef;~ - 1-l-;~;:)yf'lal) 

P~!gg(~j) = ($1$:;: + t$f;: + Hf~~ - 2$f~:~: 
- t$f~~ - t~i)Yf'la1) 

PgggOO(~j) = ~~ + ~~ _ 12~t~: - 12e~~~ + 1!~~:~~ 
Pg~goO(~j) = H: - 3$;$: - ~;$: - e:$: + $:$: 

+ ~il-$t~: + ut$:~: - 7 ~:e:$; 

P84000(l: ) _ 5 1:8 l.Qt6t2 l.Q1:6t2 + 1:41:4 
000 o,j - TI\Ol - 7 \01\02 - 7 \Ol\Oa \02\Oa 

+ ef$: + $t$~ + ~3Q$te:e: 
_ 1.;($:~:$: + ~:~:$:) 

APPENDIX B: S.-SYMMETRIC STATES 

We now give the results of the calculation of the 
number of S4 symmetric states which occur having 
L = O. We use character techniques throughout. The 
well-known formula is 

1 
a = - L NpX(Cp). 

24 p 
(Bl) 

In this equation Cp is an operator of class P of the S4 
group, X(Cp) is its character taken in the matrix 
representation of Sec. 5, and Np is the number of 
operators belonging to class p. 

One soon finds that certain traces are automatically 
zero for k and K having particular values, e.g., 
11 =;6 12 =;6 13 implies that X[(123)] is zero. 

We define 

L~ Ij == P, (B2) 

and use equations (70)~(74) in (Bl) to obtain the 
following. 

A. k-odd 

(~) ~4 b(~) 
N Ck ) = a 1 + a2 + as +"",-1 j • (B3) 

In (B3) N~~ is the total number of symmetric states 
with 

(k - 1) = (even). 
2 odd 

(B4) 
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a l is the number of symmetric states having II "#= 12 "#= 
13 and (P - 1)/2 even, 

b~ =I{O(~ - r)[ r/2 J(~ -r + 1) 
r=1 4 (r + 1)/2 4 

(
k - 7 ) - 0 -4- - 3r-l 

x [(3r + 1)/2J (k - 7 _ 3r)} _ k - 7 . 
(3r + 2)/2 4 4 

(BI0) 
[

(,,-3)/21 

(
1 + ( ) ("-2)/2)} + ( _1)(P-9)/4 -2 . 

In (B5) 

b~g) is the number of symmetric, L = 0, states of 
(B5) Ii = /j with (P - 1)/2 odd, (k - 1)/2 (~d~n), P/3 not 

an integer: 

(B6) 

must be an integer, and by the matrix symbol [ ] is 
meant the integer term. The sum is over all P-values 
having (P - 1)/2 even. 

Likewise a2 is the number having II "#= 12 "#= la and 
(P - 1)/2 odd: 

a2 = !O (~ + 1) /4{P - 7[{ot - 1)/2 + IJ 
P 2 2 Cot - 2)/2 + 1 

_ 3[(ot - 1)/2 + IJ [Cot - 1)/2J 
(ot - 2)/2 + 1 (ot - 2)/2 

1 + ( - )"-:-1 + 21X 

4 

+ [1 + (_) (,,-2)/2 ] . 
( _)(P-15'/4 [("-1)/2] ) 

2 
(B7) 

The sum here is over (P - 1)/2 odd, and ot is given by 
(B6). 

aa in (B3) is the number of symmetric states with 
11 = 12 = la. Noting, however, that in this case 
X[(123)] is not zero and that 

X[(123)] = ! A jj , (B8) 
j 

we do not calculate aa explicitly. 

b~g) is the number having two l's equal, with 
(P - 1)/2 even, (k - 1)/2 (~d~n), and P/3 not an 
integer. One has 

x [(r + 4)/2J (k - 17 _ r) 
(r + 3)/2 4 

_ O(k ~ 13 _ 3r) 

x [(3r + 3)/2J (~ - 3r)} (3r + 2)/2 4 ' 
(B9) 

b~ = k ~ 7 + 20(k ~ 15) (k ~ 11) 

+ I {O(k - 15 _ r) [(r + 4)/2J (k - 11 _ r) 
r=l 4 (r + 3)/2 4 

- o(~ - 3r) [(3r + 1)/2J (!£=l_ 3r)} 
4 (3r + 2)/2 4 ' 

(B11) 

b~ = k ~ 3 + 20(k ~ 7) (k ~ 5) 
+ I{O(~ - r) [(r + 4)/2J (~- 2) 

r=1 2 (r + 3)/2 2 

_ 0 (!£=l - 3r) [(3r + 1)/2J (~ - 3r)}. 
2 (3r + 2)/2 2 

(B12) 

b~g) is the number having Ii = Ij with P/3 integer, 
(P - 1)/2 even, but not including cases of II = 12 = 13: 

b~ = k - 21 + i 0 (k - 25 _ 3r) 
4 r=1 4 

x [(3r + 3)/2J (k - 21 _ 3r) (B13) (3r + 2)/2 4 ' 

b~ = k - 19 + iO(k - 23 _ 3r) 
4 r=1 4 

x [(3r + 3)/2J (k - 19 _ 3r). (BI4) (3r + 2)/2 4 

b~g) has (P - 1)/2 odd, but all other conditions 

duplicate b~g): 

b: = k - 13 + iO(k - 17 _ 3r) 
4 r=1 4 

x [(3r + 3)/2J (k - 13 _ 3r) (BI5) (3r + 2)/2 4 ' 

b~ = k - 15 + iO(k - 19 _ 3r) 
4 r=1 4 

x [(3r + 3)/2J (k - 15 _ 3r). (B16) 
(3r + 2)/2 4 
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N(~) + + ",4 d(~) 
(k) = C1 C2 Cs +':"1 ; • 

Similarly, d}~) is the number having P/3 not integer, 

(B17) P/2 odd, k/2 (~d~n), with Ii = /j: 

As for k odd we have: 
C1 is the number of symmetric states of Pj2 odd, 

11 =P 12 =P Is, 

(B18) 

where IX is given by 

.- ~ -~[p+ G)] (B19) 

d; = f{o(~ - r) [(r + 2)/2J (~- r) 
r=O 4 (r + 1)/2 4 

_ o(~ _ 3r) [(3r + 1)/2J (k - 4 _ 3r)} 
4 (3r + 2)/2 4 ' 

(B23) 

d~ = f{O(k - 6 _ r) [(r + 2)/2J (~_ r) 
r=O 4 (r + 1)/2 4 

_ 0 (k - 6 _ 3r) [(3r + 1)/2J (~ _ 3r)}. 
4 (3r + 2)/2 4 

(B24) 

d~g) and dfg) have Ii = i; and Pj3 an integer, with Pj2 
odd and P/2 even, respectively: 

and the sum is over all P/2 odd. C2 is the number of d: = f 0 (k - 20 _ 3r) [(3r + 2)/2J (k - 16 _ 3r), 
symmetric states of P/2 even, 11=p 12 =P 13 , 1"=0 4 (3r + 3)/2 4 

C2 = Ie (~+ 1)/4{P - 4[(1X - 1)/2 + 1J 
P 2 2 (IX - 2)/2 + 1 

_ 3 [(IX - 1)/2 + 1J[(1X - 1)/2J 
(IX - 2)/2 + 1 (IX - 2)/2 

1 + ( - )'%-1 + 21X 

4 

( )P/4 [( .. -1)/2] [( .. -1)/2+1J + -=--(-1 _ 2(-) ( .. -2)/2 + (_) (a-2)/2 ) 

4 
['''-S)/2]} (,,-2)/2 + (_ )(PH)/4 . 1 + (-) , 

4 

(B20) 

where now we sum on Pj2 even. As before, Cs is the 
number for 11 = 12 = Is, and must be calculated from 

(B8). d(~) is the number of symmetric states with P/3 
1 

not an integer, Pj2 even, k/2 (~d~n), and Ii = Ij : 

d~ = f {o (!5. - r - 1) [(r + 3)/2J (!5. - r) 
r=O 4 (r + 2)/2 4 

_ 6(k _ 3r - 3) [(3r + 4)/2J (k - 3r - 2)} 
4 (3r + 5)/2 4 ' 

(B21) 

d~ = I {o (!£=.2 - r) [(r + 3)/2J (~ - r) 
r=O 4 (r + 2)/2 4 

_ 0 (k ~ 14 _ 3r - 3) 
x [(3r + 4)/2J (k - 10 _ 3r)}. (B22) 

(3r + 5)/2 4 

(B25) 

d~ = fO(k - 26 _ 3r) [(3r + 2)/2J (k - 22 _ 3r), 
1"=0 4 (3r + 3)/2 4 

(B26) 

d: = i 0 (k - 12 _ 3r) [(3r + 2)/2J (k - 8 - 3r), 
,.=0 4 (3r + 3)/2 4 

(B27) 

d~ = iO(k - 14 _ 3r) [(3r + 2)/2J (k - 10 _ 3r). 
r=O 4 (3r + 3)/2 4 

(B28) 
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Coupled Fredholm integral equations of the second kind are derived for the electric and magnetic 
fields scattered when a smooth, bounded, perfectly conducting three-dimensional obstacle is illuminated 
by a time harmonic, monochromatic, otherwise arbitrary incident field. The kernels of the equations are 
dyadics constructed from potential functions associated with the scattering surface, i.e., solutions of 
Laplace's equation satisfying particular boundary conditions. If the frequency of the incident field is 
sufficiently low, the integral equations may be solved in a standard Neumann series. This is demonstrated 
in an example, scattering of a plane wave by a sphere. 

I. INTRODUCTION 

The purpose of this paper is to present a new method 
for obtaining solutions to the exterior boundary 
value problem arising when a time harmonic electro­
magnetic wave is scattered by a perfectly conducting, 
three-dimensional, smooth, closed, bounded obstacle 
in the particular case when the wavelength of the 
incident radiation is large compared with the char­
acteristic dimension of the scatterer. The surrounding 
medium is linear, isotropic, homogeneous, and of 
zero conductivity. 

This problem was first investigated by Lord Ray­
leigh.I In his now classic paper he examined the 
scattering of both acoustical and electromagnetic 
waves by two- as well as three-dimensional obstacles. 
For three-dimensional electromagnetic problems, he 
showed that, in the limit as the wavenumber k tends to 
zero, the electric and magnetic scattered vectors in the 
near field region can be expressed in terms of solutions 
of standard potential problems. Furthermore, he was 
able to continue these solutions to the far field region 
and arrive at his famous fourth power of frequency law 
for the scattering cross section of objects whose 
characteristic dimension is smail compared with the 
wavelength of the incident radiation. 

Since that time considerable work has been done in 
obtaining higher-order terms in the low-frequency 
expansions of the scattered fields and in generalizing 
Lord Rayleigh's ideas. Kleinman2 gives an extensive 
bibliography up to 1965. The major contribution to 
the subject came from Stevenson,3 who showed that if 
the scattered electric and magnetic fields (denoted by 
E8 and H8, respectively) are written in power series 
of the form 

00 

HB = ~ kmHB 

k m' 
m=O 

(1) 

then, by employing the Stratton-Chu formulation, 

the coefficients E!,. and H!,. in (1) can be written in the 
form 

E!,. = Fm + V1>m, H!,. = Gm + V1jJm' (2) 

where F m and Gm are known in terms of the previous 
coefficients in the expansions and 1>m and 1jJm are 
solutions of well-defined potential problems. The 
expansions of the fields thus obtained are valid in the 
near field region only, but they can be continued into 
the far field. This procedure as presented by Stevenson 
had certain weaknesses which were rectified by 
Kleinman.4 

Inherent in all three-dimensional low-frequency tech­
niques is the assumption that low-frequency expan­
sions of the type (1) exist. That this is so was proved 
by Werner5 who showed that, in the limit as k -+ 0, 
the electric scattered field tends analytically to a 
corresponding electrostatic field. The same is true of 
the magnetic scattered field.6 

In the present paper a new method is developed by 
means of which one may obtain as many terms as 
desired in the low-frequency expansions of the 
scattered fields by successive operations on two 
dyadic potential functions. These fundamental dyadics 
are derivable from solutions of the Laplace equation 
which satisfy certain boundary conditions on the 
scatterers. The class of surfaces for which the method 
applies is thus limited to those surfaces for which the 
requisite potential problems can be solved. This is the 
same limitation to which Stevenson's method is 
subject. The advantage of the present method over 
Stevenson's is that once the fundamental dyadics for 
a particular surface are determined, we can find 
successive terms in the low-frequency expansion by a 
straightforward iteration of a pair of coupled Fred-
holm integral equations of the second kind, doing 
away with the need to solve 3m boundary value 
problems7 in the determination of E!,. and H!n in 
(1). The present method, moreover, yields the fields 

795 



                                                                                                                                    

796 J. S. ASVESTAS AND R. E. KLEINMAN 

everywhere in space, thus obviating the problem of 
continuation of the near field results to the far field. 
A disadvantage is that it applie~ (at least for the 
present) only to the case of perfectly conducting 
scatterers, while Stevenson's applies to dielectric and 
imperfectly conducting scatterers as well. 

The main result of the paper is the following: If 
ES(R') and W(R') are the electric and magnetic fields 
at R' scattered by a smooth surface S when illuminated 
by a time harmonic, monochromatic, but otherwise 
arbitrary incident electromagnetic field and if e and h 
denote e-ikR'Es and e-ikR'HS, respectively, then8 

heR') = ik Iv{[Ye(R) + it x heR)] • E~)(R I R') 

- R . h(R)V' N(e)(R I R')} dv 

- V' Is " . h(R)N(e)(R I R') ds, (3) 

e(R') = -ikL[[Zh(R) - it x e(R)]. H~l)(R I R') 

+ it . e(R)V' ( G(e)(R I R') 

_ [U(R) - l]U(R'»)] 
471"C 

+ !s[" x eeR)]. H~l)(R I R') ds. (4) 

N(e), G(e), and U are all potential functions and 
E~), H~l), and C are defined in terms of them. If k is 
small, the right-hand sides are dominated by terms 
which are known through the boundary conditions 
on ES and H 8

, thus providing a basis for the iteration 
process which is shown to yield the exact result in a 
particular example. 

The plan for the development of the method is as 
follows: The dyadic form of Green's theorem is 
employed in Sec. II to derive two vector integral 
equations whose kernels are dyadic functions of 
position. In Sec. III it is shown that the requirements 
imposed on the dyadics are satisfied by certain of the 
coefficients in the low-frequency expansions of 
harmonically oscillating infinitesimal electric and 
magnetic dipoles. Moreover, these coefficients (dy­
adics) are shown to be derivable from standard 
potential functions. In Sec. IV we employ the expan­
sion theorem of Wilcox9 to show that the electric and 
magnetic fields of the scattering problem belong to the 
same class of vector functions as the unknowns of the 
integral equations, thus arriving (with the help of 
Maxwell's equations) at two coupled integral equa­
tions for the scattered fields. These equations may be 
iterated to produce a Neumann series for each of the 

fields. In Sec. V the results are applied to the problem 
of scattering by a sphere as a check and demonstration 
of the method. 

II. NOTATION AND DERIVATION OF TWO 
INTEGRAL EQUATIONS 

Let S denote a closed, bounded, regular surface in 
£3, and denote the exterior by V and the interior by 
Vi. Let Ii denote a unit normal vector directed from S 
into Vi. (Boldface denotes a vector, a caret denotes a 
unit vector, and sans serif denotes a dyadic.) Erect a 
Cartesian coordinate system with origin in Vi and let 
R be a position vector with spherical polar coordinates 
(R, (), 4». The smoothness of the surface S is stipulated 
by requiring that S be described by an equation 

R = g«(), 4», ° s () S 71", ° s 4> S 271", (5) 

where g is continuously differentiable in () and 4>, 

g«(),O) = g«(), 271"), (6) 

a a 
04> g(O, 4» = 04> g( 71", 4» = 0, (7) 

and by requiring that ii. it be uniformly Holder 
continuous on S. 

A vector-valued function F(R) will be called regular 
in the exterior domain V iflO 

F(R) E C2(V), F(R) E C1 (V US), (8) 

lim IR x F(R) I < 00, (9) 
R-+oo 

lim IRV x F(R)I < 00. (10) 
R-+oo 

The object of this section is to derive two integral 
equations for vector-valued functions regular in this 
sense. The kernels of the integral equations involve 
the following fundamental dyadic functions of two 
points: 

E(u(R I R') = V x (- I ) + EW(R I R'), 
m 471" IR _ R'I mr· 

(11) 
where 

v x V x E!!~ = 0, R, R' E V, (12) 

Ii x E!!) = 0, RES, (13) 

lim IR2R x E~)I < 00, (14) 
R-+oo 

R-+oo 
and 

HW(R I R') = V x (- I ) + HW(R I R') 
e 471"IR _ R'I er ' 

(16) 
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where 

v x V x H~!) = 0, R, R' E V, 

n x V x H~l) = 0, RES, 

lim IR2R x H~l)1 < 00, 
R-+C1J 

R-+oo 

(17) 

(18) 

(19) 

(20) 

V operates on the coordinates of the unprimed vector 
R (V' and Vs will operate on R' and Rs, respectively), 
where R. denotes a radius vector to a point on the 
surface S. I is the identity dyadic which is given in terms 
of rectangular unit vectors by 

I = alaI + at 2 + a3a3. (21) 

An explicit definition of these dyadics in terms of 
potential Green's functions for the surface S, as well 
as a physical interpretation as coefficients in an 
expansion of the fields due to infinitesimal electric 
and magnetic dipoles, will be deferred to the next 
section. The notation is motivated by this interpreta­
tion. Actually, the above properties of E~) and H~o do 
not uniquely define these dyadics; additional restric­
tions will be imposed in the next section. They are 
sufficient, however, to establish the following. 

Theorem 1: If F(R) is a vector-valued function, 
regular in V, then 

(a) 

V' x F(R') = - L[V x V x F(R)]. E~)(R I R') dv 

and 

(b) 

+ Is [0 X F(Rs)] • V. x E~)(R., I R') ds 

(22) 

V' x F(R') = - L[V x V x F(R)] • H~l)(R I R') dv 

+ Is {n x [V. x F(R.)]} 

. H~l)(Rs I R') ds, (23) 

where 0 is the unit normal from S into its interior, 
directed away from V. 

The proof of this theorem is based on the dyadic 
form of the divergence theorem for infinite domains; 
namely, if A(R) is continuously differentiable in V, 
then 

r V • A(R) dv = r n . A(R) ds, 
Jv Js+soo 

(24) 

where V is the volume exterior to S and interior to Soo 
and Soo is a large sphere whose radius will tend to 
infinity. The unit normal it is always directed out of V. 

This form of the divergence theorem follows 
immediately from the corresponding theorem for 
vector functions. Attention is drawn to the fact that 
the dot product in the surface integral is not neces­
sarily commutative. By writing A(R') as 

A(R) = F(R) x (V x P) + [V x F(R)] x P, (25) 

where F(R) is regular in V and P is a dyadic function 
of position, eventually to be identified as one of the 
fundamental dyadics E~) or H~t), and employing 
(A3),n we obtain the following Green's identity: 

L[V x V x F)· P - F . (V x V x P)] dv 

= r n. [F x (V x P) + (V x F) x P] ds. (26) 
Js+soo 

Since P is to be identified with one of th~ fundamental 
dyadics, which have the same singularity at R' = R, 
it is necessary to delete from V a small sphere S' with 
origin at R' and radius r (see Fig. 1) and then let 
r -+ 0, yielding, since V x V x P = ° in the remaining 
volume, 

Iv (V x V x F) • P dv 

= r it. [F x (V x P) + (V x F) x P] ds. (27) 
Js+soo+s' 

The behavior of P as R -+ 00 is given in (14) and (15) 

s 
CII) 

FIG. 1. Geometry for the application of Green's identity. 
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or (19) and (20). This, together with the behavior of 
F, (9), (10), and (AI), guarantees that 

lim r ft· [F x (V x P) + (V x F) x P] ds 
R-+oo Jsoo 

121T lIT 
= lim drp dOR 2 sin O[(R x F). V x P 

R .... oo 0 0 

Using this result, as well as (28), in (27) yields 

V' x F(R') 

= - L(V x V x F). P dv 

+ L ft • [F x (V x P) + (V x F) x P] ds (34) 

- (V x F) • (R x P)] 

=0. 
or, with (AI), 

(28) 

Also, since the singularity of the fundamental dyadics 
is the same, regardless of whether P is identified with 
E:.!' or H~lI, the surface integral over S' is 

Is' = lim r ft· [F x (V x P) + (V x F) x P] ds 
r-+O Js' 

= !~~ L,D. {F x [V x V X (47T IR-~ R,J] 

+(V x F) x [V x ( -I ,)]}dS, (29) 
47T IR - R I 

where r = IR - R'I. By (A7) and the fact that, on S', 
ft = -f = (R' - R)/IR' - RI, this becomes 

Is' = -"Jim r f. {F x VV(- _1_) 
r .... O J8' 47Tr 

+ (V x F) x [V x (4~~)]} ds. (30) 

By means of (A.5) this may be rewritten as 

Is' = -lim r f. {(V x F)V ( -1) 
r-+O Js' 4 7Tr 

- V x [FV ( - 4:r)] 

+ (V x F) x [V x ( - 4~r)]} ds, (31) 

and thus the integral of the term involving f . V x 
vanishes by Stokes' theorem. With the help of Eqs. 
(AI), (A2) , and (A6), the remaining terms in the 
integrand may be rewritten as follows: 

i· {(V x F)V(-1/47Tr) + (V x F) x [V x (-1/47Tr)]} 

= (1/47Tr2)f. [(V x F)f + (V x F) x (f x I)] 
= (lj47Tr2){f . (V x F)f - (V x F) • [f x (f x OJ) 

= (1/47Tr2)[i • (V x F)f - (V x F'). (if - 0] 
= (lj47Tr2)V x F. (32) 

Substituting this result in (31) gives 

Is' = -lim r ds V x ~ = -V' x F(R'). (33) 
r-+O JS' 47Tr 

V' x F(R') 

= - L(V x V x F). P dv - Is{F . [ft x (V x P)] 

+ (V x F)· (ft x P)} ds. (35) 

If P = E~', then the boundary condition (13) implies 

Is(V x F). (ft x E~') ds = 0 (36) 

and yields 

V' x F(R') = - L (V x V x F) • E:.!' dv 

-L F • (ft x V x E~') ds (37) 

which, with (AI), establishes Theorem lea). 
If P = H~l', then the boundary condition (18) 

implies 

L F • ft x V X H~lI ds = 0 (38) 

and 

V' x F(R') = - L(V x V x F). H~l) dv 

- fs(V x F) • (ft x H~l) ds (39) 

which, with.(AI), establishes Theorem l(b). 
The integral equations given in Theorem 1 constitute 

the basis for the solution of the low-frequency electro­
magnetic scattering problem. They will be employed 
in Sec. IV to derive integral equations for the scattered 
fields. In order to be soluble, it is necessary to have 
explicit expressions for the dyadic kernels in terms of 
potential functions, and this is accomplished in the 
next section. 

III. THE FUNDAMENTAL DYADICS AND THE 
FIELDS OF INFINITESIMAL DIPOLES 

The fundamental dyadics appearing in Theorem 1 
are not uniquely specified by (11)-(20). The present 
section is devoted to defining physically meaningful 
dyadics which not only fulfill the requirements for use 
in Theorem I but also are expressed explicitly in terms 
of standard potential functions. 
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Using the definitions and notation of Sec. II', let S 
be a perfectly conducting, closed, bounded, regular 
surface immersed in a linear, isotropic, homogeneous, 
nonconducting medium of infinite extent. Let J be the 
volume dyadic current density, nonzero in a finite 
region of V, the exterior of S. A harmonic time 
variation (e- irot

) associated with J is suppressed. The 
total time independent electromagnetic fields in 
dyadic form satisfy Maxwell's equations 

V x E(R) = ikZH(R), REV, (40) 

V x H(R) = J(R) - ikYE(R), REV, (41) 

where 1/ Y = Z = (/J/€)! is the characteristic imped­
ance of the medium, the boundary conditions 

it x E(Rs) = 0, it. H(Rs) = 0, (42) 

and the Silver-MUller radiation condition. Specify 
two types of current density, namely 

J. = -iklb(R I R') (43) 
and 

Jm = -YV x [lb(R I R')]. (44) 

The current distribution in (43) is that of three 
orthogonal harmonically oscillating infinitesimal elec­
tric dipoles situated at R', of dipole moment 

Po; = aj/e, j = 1,2,3, (45) 

where e is the velocity of propagation in the exterior 
medium. Similarly, the current distribution (44) is that 
of three orthogonal harmonically oscillating infinites­
imal magnetic dipoles at R' , of dipole moment 

Pmj = -Yaj , j= 1,2,3. (46) 

Let E. and H. denote the fields due to the current 
distribution J. [Eq. (43)], and expand them in powers 
of (ik): 

00 00 

E. = !(ik)nE~n), H. = !(iktH~n). (47) 
n=O n=O 

Substituting these expressions together with (43) in 
(40)-(42) and equating like powers of ik yields 

V x E~O) = 0, 
V x E~n) = ZH~n-1), n > 0, 

V x H~OI = 0, 

V X H!1) = -lb(R I R') - YE~O), 

V x H~n) = - YE~n-l), n > 1, 

it x E~nl = 0, it • H~n) = ° on S, 

(48) 

(49) 

(50) 

(51) 

(52) 

n ~ 0. (53) 

Similarly if Em and Hm denote the fields due to the 
current distribution Jm [Eq. (44)] with expansions 

00 00 

Em = I(ik)nE~), Hm = !(ik)nH~), (54) 
n=O n=O 

then the same procedure leads to 

V x E(O) = ° m , 

V X E(n) = ZH(m-1) n > ° m m' , 

V x H~) = - YV x [lb(R I R')], 

V x H~) = - YE!:-1), n > 0, 

(55) 

(56) 

(57) 

(58) 

it x E~n) = 0, it· H~) = ° on S, n ~ 0. (59) 

The terms E~) and H~l) occurring in these equations, 
that is, the second terms in the expansions of the 
electric field due to the magnetic dipoles and the 
magnetic field due to the electric dipoles, are 
the fundamental dyadics to be used in Theorem 1. 
Explicit expressions for these terms, derived in 
Appendix B, are 

E~)(R I R') 

= V x (_ I ) 
471'IR-R'1 

3 ( 1 1 a; . V'N(e)(R.1 R') A + I --V x nds 
;=1 471' S IR. - RI 

H~l)(R I R') 

+ VG~:(R I R'») aj , (60) 

=vx( __ 1 ) 
471'IR-R'1 

3 ( 1 la"V'N(il(R IR') +! - - v x' e s fi ds 
;=1 471' siRs - RI 

+ VN~~)(R I R'»)a j , (61) 

where N(el (R I R') is the exterior Green's function for 
the Neumann boundary conditions on S, i.e., 

N(e)(R I R') = - 1 + N(el(R I R') (62) 
471' IR - R'I r , 

vw~e) = 0, R, R' E V, (63) 
oN(e) 
-::l- (R. I R') = 0, (64) 
un. 

N(e) regular at infinity in the sense of Kellogg12 ; 

G~~(R I R') are exterior Dirichlet potential functions 
for S, viz., 

V2G~~(R I R') = 0, R, R' E V, j = 1,2,3, (65) 

it x VG~~(R I R') = ~ fi x V x ( ai 

47T IR - R'I 
+ r aj • V'N(e)(R.1 R') it dS), 

Js IRs - RI 

RES, R'EV, (66) 

Is fi· V.G~~(R.I R') ds = 0, (67) 
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G~~(R I R') regular at infinity in the sense of Kellogg; 
N;iI(R I R') is an interior Neumann potential, viz., 

V2N~;)(R I R') = 0, R E~, R' E V, (68) 

Os· VsN~i)(Rs I R') 

= -0 • V (G(e)(R I R') _ U(Rs)U(R'»). (69) 
8 s s 47TC' 

G(e)(R I R') is the exterior Green's function for the 
Dirichlet boundary condition on S, i.e., 

G(e)(R I R') = -(47T IR - R'I)-l + G~e){R I R'), (70) 

(71) 

G(e)(Rs I R') = 0, Rs E S, R' E V, (n) 

G(e) regular at infinity in the sense of Kellogg; U(R) 
is the conductor potential for S, i.e., 

U{R) = r ~ G(e)(Rs I R) ds, REV; (73) Json s 

C is the capacity of S, i.e., 

1 1 a C = - - U(Rs)ds; 
47T sons (74) 

and the N!~) (R I R') are exterior Neumann potential 
functions for S, viz., 

V2N~i)(R I R') = 0, R, R' E V, (75) 

o . V N~~'(R I R') = 0 . V x ( aj 

47T IR - R'I 

1 la .. V' NW(R I R') ) + _ J e sods 
47T siR" - RI ' 

RES, R' E V, (76) 

N!;) (R I R') regular at infinity in the sense of Kellogg. 
With E!.!) and H~l) thus explicitly defined, it is 

straightforward to verify that (11)-(20) are satisfied; 
(11) and (16) are valid by inspection, (12) and (17) 
are valid by a direct calculation using the fact that the 
curl of a gradient vanishes, the boundary condition 
(13) is satisfied by virtue of (66) while the boundary 
condition (18) is seen to be fulfilled using (51), (B32), 
and (B35), and the conditions at infinity (14), (15), 
(19), and (20) are all fulfilled because both E~) and 
H~l) behave at infinity as [A(O, 4»/R2] + O(1/R3). 

IV. INTEGRAL REPRESENTATIONS OF THE 
ELECTROMAGNETIC SCATTERED FIELDS 

Using the same definitions and notation introduced 
previously, we now direct our attention to the scatter­
ing of a time harmonic monochromatic incident 
electromagnetic field by a perfectly conducting surface 

S. If Ei(R) and Hl(R) denote the incident electric and 
magnetic fields, respectively, the problem is one of 
determining the scattered fields ES{R) and HS(R) such 
that 

V x E"(R) = ikZHs(R), V x HS(R) = -ikYES(R), 

fi x ES(R) = - 0 x Ei(R), 

and 

REV, (77) 

o . HS{R) = - 0 • Hi(R), 

RES, (78) 

~i~R[ R x V x (!:) + ik(!:) ] = 0, 

uniformly in R. (79) 

Recall that fi is directed from the surface S into its in­
terior Vi' away from the exterior V. 

In addition to the Silver-Muller radiation condition 
(79), the scattered fields ES and HB satisfy the con­
ditions (9) and (10), namely 

IR x FI < 00 and IRV x FI < 00, as R -->- 00. 

This follows from an expansion theorem due to 
Wilcox9 which asserts: If F(R) is a vector radiation 
function [satisfies Maxwell's equations (77) and the 
radiation condition (79)] in an exterior region R > c, 
then F(R) has an expansion 

eikR 
00 F (0 J.) 

F(R) = - I n ,'I' , (80) 
R n=O Rn 

valid for R > c, which converges absolutely and 
uniformly in the parameters R, e, and 4> provided that 
R Z c + € > c. Furthermore, the series can be 
differentiated term by term any number of times with 
respect to R, 0, and 4>, and the resulting series all 
converge absolutely and uniformly. 

The scattered fields are thus regular vector valued 
functions suitable for use in Theorem 1. Letting F be 
ES in Theorem lea), (22), and HS in Theorem l(b), 
(23), and making use of Maxwell's equations (77) 
and the boundary conditions (78), we obtain the 
following integral equations: 

ikZH"(R') = _k2 r ES(R)· E~)(R I R') dv Jv 
- f}ii x EI(Ho)] • [V. x E~)(Rs I R')] ds, 

(81) 

ES(R') = -ikZ fvHS(R). H~l)(R I R') dv 

- fs[O x Ei(Rs)] • H~l)(R$1 R') ds. (82) 

The first of these equations may be written more 
conveniently by taking into consideration the explicit 
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form of E~). It is easily shown, by usmg (Bl), (Bll), 
and the definition of the exterior Neumann Green's 
function (62), that 

V x E~)(R I R') = -VV'N(e)(R I R') - 1<'l(R I R'). 

(83) 

For RES and R' E V the <'l function does not contrib­
ute; hence this result, together with the identities 
(AI) and (AS), allows the integrand 'of the surface 
integral in (81) to be written 

[fi x Ei(Rs)] • Vs x E~)(Rs ! R') 

= fi· ([Vs X Ei(Rs)]V' N(e)(Rs I R') 

- Vs X [Ei(Rs)V' N(e)(Rs I R'm. (84) 

The fi· Vs x term in this expression vanishes by 
Stokes' theorem when integrated over the closed 
surface S. Moreover, the incident field Ei in the 
remaining term must satisfy Maxwell's equation 
V x Ei = ikZHi. The surface integral in (81) can then 
be written 

L(fi X Ei). (V x E~») ds = -ikZIs fi· HiV'N(e) ds. 

(85) 

Utilizing this result in (81) leads to the simplification 
incorporated in the following theorem. 

Theorem 2,' If ES and HS are electromagnetic fields 
scattered by S when illuminated by Ei and Hi, i.e., if 
ES and US satisfy (77)-(79), then 

HS(R') = ikY L ES(R) . E~)(R I R') dv 

+ V' L [fi • W(Rs)]N(e)(R s I R') ds, (86) 

ES(R') = -ikZ LHB(R). H~ll(R I R') dv 

- Is[fi x Ei(Rs)] . H~1)(Rs I R') ds, (87) 

where E~) and H~1) are the fundamental dyadics (60) 
and (61) and N(e) is the exterior Neumann Green's 
function for Laplace's equation [(62)-(64)]. 

At this point one might be tempted to solve this 
coupled system of integral equations for small k by 
iteration, using the surface integral terms, which do 
not have k as a factor, as the zeroth-order iterates. 
Such a procedure will, unfortunately, be unsuccessful. 
The reason for this lies in the fact that neither the 
surface integral term nor any of the iterates will 
contain eikR' as a factor. However, Wilcox's theorem 

(80) makes it clear that the scattered fields should 
contain this factor. This leads to the conclusion that 
partial sums of the Taylor series expansion of eikR

' 

appear in the iterates. As the iteration proceeds, 
positive powers of R will appear in the volume 
integrals and these integrals will diverge. This, in 
fact, is the cause of the breakdown of Stevenson's 
special method after three terms in the expansion are 
found.3b 

To avoid this difficulty, the exponential eikR is 
removed by introducing the following vector functions: 

e(R) = e-ikRES(R), heR) = e-ikRH"(R). (88) 

The motivation for doing so lies in Wilcox's expansion 
theorem. From (80) it is seen that, at least in the 
region where the expansion is valid, the new fields e 
and h do not contain the troublesome factor eikR

• 

Furthermore, these fields are regular in the exterior 
region V and hence may be represented by using 
Theorem 1. This same device proved successful in an 
analogous treatment of scalar scattering problems at 
low frequencies. 14•1s Identifying F with e in Theorem 
lea) and with h in Theorem l(b) leads to 

V' x e(R') = - r [V x V x e(R)] • E~)(R I R') dv Jv 

and 

+ Is [fi x e(R)] . V x E~)(R I R') ds 

(89) 

V' x heR') = - L[v x V x h(R)]. H~1)(R I R') dv 

+ Is {fi x [V x heR)]} . H~ll(R I R') ds. 

(90) 

With the definition (88) of e and h and Maxwell's 
equations, it follows that 

V x e = ik(Zh - R x e), (91) 

V x h = -ik(Ye + R x h), (92) 
and 

V x V x e = k\e + ZR x h) - ikV x (R x e), 

(93) 

V x V x h = k\h - YR x e) - ikV x (R x h). 

(94) 

With these results for e and h, the following theorem 
may be established. 

Theorem 3,' If ES and HS are the electromagnetic 
fields scattered by the perfectly conducting surface S 
when illuminated by Ei and Hi, i.e., E S and H 8 satisfy 
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heR') = ik L{[Ye(R) + R x h(R)]· E~)(R I R') 

- R . h(R)V' N(e)(R I R')} dv 

- V' Is ii . h(Rs)N(e)(R. I R') ds (95) 

and 

e(R') = -ikL[[Zh(R) - R x e(R)]· H~l)(R I R') 

+ [R . e(R)]V' ( G(e,(R I R') 

+ VCR') - V(R)V(R'»)] dv 
47TC 

+ Is[ii x e(Rs)] • H~J)(Rs I R') ds, (96) 

where E!,!) and H~l) are the fundamental dyadics (60) 
and (61), G(e) andN(e) are the exterior potential Green's 
functions for Dirichlet and Neumann conditions, re­
spectively, (70)-(72) and (62)-(64), V is the conductor 
potential (73), and C is the electrostatic capacity of S 
[(74)]. 

The proof of this theorem rests on straightforward 
manipulation of Eqs. (89) and (90), the highlights of 
which are indicated in Appendix C. 

These integral equations are in a form which permits 
solution for the unknown fields e and h, provided that 
k is sufficiently small. There are two slightly different 
procedures, both of which depend on the fact that the 
surface integral terms do not involve the unknown 
fields since the boundary conditions (78) imply 

o . heRs) = _e-·kR80· HI(Rs)' (97) 

o x e(R.) = _e-ikR,o x Ei(Rs)' (98) 

One method of solution involves iteration of these 
coupled Fredholm equations using the known surface 
integral terms as the zeroth-order iterates. 

The second method leads more directly to the low­
frequency expansion. It involves expanding the known 
terms as well as the unknown fields in powers of k, 
then substituting these expressions in the integral 
equations, equating like powers of k, and obtaining 
recursion relations for the coefficients in the expansions. 
Explicitly, write 

00 00 

e = I (ik)"e" , h = I (ik)"h" , (99) 
n-O n-O 

- V' Iso. hNe ds = V' Is e-ikR,o . Hi(R.)Ne(R.1 R') ds 

00 

= I (ik)"fn(R'), (100) 
,,=0 

Is (0 x e) . H~n) ds 

= - Ise-ikR8[ii x Ei(Rs)] • H~l)(R.1 R') ds 

00 

= I (ik)ng,,(R'). (101) 
n=O 

That e and h may be written in this form follows from 
the definition (88) and the work of Werner,5.6 who 
showed that the electric and magnetic scattered fields 
tend analytically to corresponding electrostatic and 
magneto static fields as k -+ O. The power series 
representations of the surface integral terms follow 
from the analyticity in k of the incident fields whether 
they are dipoles or plane waves. Substituting (99)­
(101) in the integral equations of Theorem 3 and 
equating like powers of ik yields the following recur­
sion formulas: 

ho(R') = 10(R'), (102) 

hn+1(R') = Iv{[Yen(R) + R x h,,(R)] • E~)(R I R)' 

- R . hn(R)V' N(e)(R I R')} dv + f n+1(R'), 

(103) 

eo(R') = goeR'), (104) 

en+1(R') = - Iv[ [Zhn(R) - R x en(R)] . H~l)(R I R') 

+ [R. en(R)]V' ( G(e)(R I R') 

+ VCR') - V(R)V(R'»)] dv + gn+1(R'). 
47TC 

(l05) 

V. SCATTERING OF A PLANE WAVE BY A 
PERFECTLY CONDUCTING SPHERE 

The results of the previous section are applied here 
to the problem of scattering of a plane wave by a 
perfectly conducting sphere. The sphere is of radius a, 
and its center coincides with the origin of a rectangular 
coordinate system (x, y, z). According to the notation 
of the previous sections, Vi denotes the volume of the 
sphere, V the rest of space, and S the surface of the 
sphere. The unit normal D is directed away from V 
and into Vi' The plane wave propagates in the direc­
tion of the negative z axis with its electric vector 
polarized along the positive x axis. A spherical 
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coordinate system (R, 0, cp) will be used along with the 
rectangular coordinate system (x, y, z). 

The starting point in the problem is to find the 
explicit forms of the dyadics H~l) and E!,!). The 
derivation of these dyadics involves frequent use of 
the Dirichlet and Neumann static Green's functions, 
and these are given below. 

The expansion of the free-space static Green's 
function in spherical harmonics is 

1 

41T IR - R'I 
1 «J n (n - m)' 

= - - I I €m • r::( cos O')P;:C cos 0) 
41T 10=0 m=O (n + m)! 

Rn 

x cos m( cp - cp') ~1' (106) 
R~+ 

where R = min (R, R'), R = max (R, R'), and < > 
€m is the Neumann factor: €o = 1, Em = 2 for 
m = 1, 2, .... The functions r;: are the associated 
Legendre functions defined by 

p;:'(x) = (-om (n + m)! (1 _ x2)m/2 
2m m! (n - m)! 

X 2Fl(1 + m + n, m - n; 1 + m; 1 ~ X), 
-1 ~ X ~ 1. (107) 

This definition is according to Magnus et al.16 and all 
the contiguous relations for these functions that will 
be used subsequently can be found there (Ref. 16, 
p. 171). The regular part of the exterior static Dirichlet 
Green's function [Eqs. (70)-(72)] for the sphere is 
given by 

G;')(R I R') 
1 «J n (n - m)1 

= - I I €m • P;:'(cos O')P;:'(cos 0) 
41T 10=0 m=O (n + m)! 

a21O+1 
X cos m(cp - cpr) (RR,)1O+l' (108) 

while the regular part of the corresponding Neumann 
Green's function [Eqs. (62)-(64)] is given by 

N~6)(R I R') 
1 <Xl n n (n - m)1 

= - - I I Em -- • p;:'(COS 0') 
41T 10=0 m=O n + 1 (n + m)! 

a21O+1 
X P':.'(COs(J)cosm(cp - cpr) . (109) 

(RR,)1O+l 

The conductor potential for the sphere (73) is 

UCR) = r 1- G(6)(R.1 R) ds 
J8on. 

= - r ~ G<e)(R I R) ds = ~ (110) J8 oR.' R' 

and the electrostatic capacity (74) is 

C = 1... r 1-.- U(R.) ds = l:.l2rr dCPl~ dO = a. 
41T J8 an. 41T 0 0 

(111) 

To complete the explicit calculation of the funda­
mental dyadics, the following intermediate results are 
useful: 

The integral of the exterior Neumann function in 
(60) is 

1 i a .. V'N(e)(R I R') - - v x' • As ds 
41T 8 IRs - RI 

1,., , _ «J n €m(n-m)!a2n+l 
= --a .. VVxRI I -~---"----

41T 1 1O=1m=0(n+1)(n+m)!(RR')n+1 

X p:'(cos O)p:,(cos 0') cos m(cp - cpr) 
= _ a .. V'V x (o<e)(R I R') _ U(R) U(R') 

1 r 41TC 

+ N;e)(R I R'») R, (112) 

the interior Neumann function [(68) and (69)] is 

N~;)(R I R') = l... i i €m (2n + 1) (n - m)! 
41T 10=1 m=O n (n + m)! 

x P:'( cos O)P:,( cos 0') 

R10 
x cos m(cp - cp') R'1O+l + v.(R'), (113) 

the integral of the interior Neumann function appear­
ing in (61) is 

1 La i • V'N~il(Rsl R') - - V x A ds 
41T 8 IRs - RI • 
1 «J 10 

=-aj.V'VxRI I 
41T 10=1 m=O 

€m(n - m)! a21O+lp':.'(COS O)P:'(COS O')COS m(cp - cpr) x , 
n(n + m)! (RR')1O+l 

the functions G~~ [(65)-(67)] are 

1 <Xl 210+1 
G(e)(R I R') ___ '" _a __ 

m1 - 41T n-=l n(RR,)1O+l 

(
10-1 (n - m)1 

x I . P':.'( cos 0') 
m=O (n + m)! 

(114) 

x p;:'+1(cos 6) sin (m + l)cfo - mcp'l 

+ i (n - m + I)! P;:'(cos 0') 
m=l (n + m - 1)! 

X p:,-l(cosO)sin[(m -l)cp - mcp'J), 

(115) 
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1 00 2n+l 
G(e)(R I R') __ ~ a 

m2 - 4 "'" -C-R-R-,)-n+-l 1T n=1 n 

(
n-1 (n - m)' x! . P;:'(cos 0') 
m=o(n + m)! 

X p:,+1(cos 0) cos [em + 1)cf> - mcf>') 

_ i (n - m + 1)! P;:'(cos 0') 
m=l(n + m - 1)! 

X p:,-l(COSO) cos [em - 1)cf> - mcf>'J), 

(116) 

G~!(R I R') = - ~ :i i men - m)! P;:'(cos 0') 
21T n=1 m=l n(n + m)! 

a2n+1 

X P:'(cos O)sin m(cf> - cf>') l' 
(RR')n+ 

and the functions N!;) [(75) and (76)] are 

1 00 2n+l 
N(eJ(R I R') __ ~ _---..;a __ _ 

e1 - 41T n7::1 (n + l)(RR,)n+l 

X (ni (n - m)! P;:'(cos 0') 
m=o(n + m)! 

(117) 

X p:,+1(cos 0) sin [em + 1)cf> - mcf>'] 

+ i (n - m + 1)! P;:'(cos 0') 
m=1 (n + m - 1)! 

x p:,-1(COS 0) sin [em - 1)cf> - mcf>'J), 

(118) 

1 00 2n+1 
N(eJ(R I R') ___ ~ _---..;a=---__ 

e2 - 41T n7::1 (n + l)(RR')n+1 

x ~ - m . P;:'(cos 0') 
(

n-l (n )' 

m=O (n + m)! 

x p:,+1(cos 0) cos [em + 1)cf> - mcf>'J 

~ (n - m + 1)! m( 11') 
- "'" Pn cos v 

m=l (n + m - 1)! 

x p:,-1(COS 0) cos [em - 1)cf> - mcf>'l), 

(119) 

N~~)(R I R') = 1.- ~ i ~ (n - m)! P:'(cos 0') 
21T n=l m=1 n + 1 (n + m)! 

a2n+1 

X Pnm(COS 0) sin m(,I.. - ,1..') +1 . 
't' 't' (RR,)n 

(120) 

The derivation of these results is straightforward 
though tedious, with repeated use of the orthogonality 
of the spherical harmonics and the contiguous 
function relations mentioned previously. These results 
complete the definitions of E~) and H~l) [(60) and (61»). 

As mentioned at the beginning of this section, the 
incident field is a plane wave propagating along the 
negative z axis with its electric field polarized along 
the positive x axis. Explicitly, 

(121) 

The scattered fields ES and W satisfy (77)-(79) and 
are related to e and h by (88). To determine the co­
efficients in the expansions of e and h [Eq. (99)], it is 
necessary first to determine the functions fn and gn 
[(100) and (101)]. With the incident field (121), 

fn(R) = Y( _a)n V ( Rs' 3
2
(1 + cos Os)nN(e)(Rs I R) ds, 

n! Js 
(122) 

gn(R) = (_a)n r (1 + cos Os)nRs x a1 • H~l)(Rs I R) ds. 
n! Js 

(123) 

Expressions for N(e) and H~l) have been given pre­
viously. Combining all these results in (102)-(105), the 
first few terms in the expansions of e and b, after 
laborious but straightforward calculation, are found 
to be 

eo(R) = a3V[Pi(cos 0) cos cf>IR2
] 

= (a 3JR3)(R2 sin 0 cos cf> 

- li cos 0 cos cf> + q, sin cf», (124) 

boeR) = ! Ya3V[pi(cos 0) sin cf>/R2] 

= (Ya 3/R3)(R sin 0 sin cf> 

- lit cos 0 sin cf> - q,t cos cf», (125) 

el(R) = (a3/R2)[-R2 sin 0 cos cf> 

+ li(i + cos 0) cos cf> - q,(l + t cos 0) sin cf>] 

- taSV[Pi(cos 0) cos cf>(1IR3)], (126) 

bl(R) = (Ya3/R2)[-Rsin 0 sin cf> 

+ li(l + t cos 0) sin cf> + q,(t + cos 0) cos cf>] 

- t YaSV[P~(cos 0) sin cf>(1/R3»), (127) 

e2(R) = (a 3jR)[-li(t + cos 0) cos cf> 

+ q,(l + t cos 0) sin cf>J 

+ (a5JR3)[R( -t sin 0 + t sin 20) cos cf> 

+ li(-fs cos 0 - i cos 20) cos 4> 
+ q,( -T\ + t cos & + t cos 20) sin cf>] 

+ /5a7V[P~(cos &) cos 4>(1/R4
)], (128) 

biR) = -(Ya3jR)[li(1 + i cos 0) sin cf> 

+ q,(t + cos &) cos 4>] 
+ (Y a5 

/ R3)[R(t sin & + i sin 2(J) sin cf> 
+ li( -H cos & - 1 cos 2&) sin cf> 
+ q,( -1

3
0 - ! cos & - t cos 2(J) cos 4>] 

+ 6
1
0 Ya7V[P~(cos (J) sin 4>(1/R4

)], (129) 
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eaCR) = (a5/R2)[R(~ sin 0 - t sin 20) cos rp 
+ &( to - 1

2
5 cos 0 + t cos 20) cos rp 

+ cP( 13
0 - H cos 0 - t cos 20) sin rp] 

- ta6V[P~(cos 0) cos rp(1/R2
)] 

+ (a 7/R4)[R(-31
0 sin 0 

- 5
5
6 sin 20 - t sin 30) cos rp 

+ &Uo + 1~0 cos 0 

+ Ti 2 cos 20 + t cos 30) cos rp 
A 1 69 + «p( -20 - TTIo cos 0 

- /2 cos 20 - 3
1
2 cos 30) sin rp] 

- 4ha9V[P~(cos 0) cos rp(1/R5
)]. (130) 

The scattered fields themselves are 

ES(R) = eikR(Jo(ik)nen(R) + O(k4») , (131) 

HS(R) = eikR(,~yk)nhn(R) + O(k3») , (132) 

which in the far field (R --+ (0) become 

ES(R) = (eikR/kR){(ka)3[&(t + cos 0) cos rp 
- cP(1 + t cos 0) sin rp] + O(k5)} 

+ 0(1/R2
), (133) 

HS(R) = (YeikR/kR){(ka)3[6(l + t cos 0) sin rp 

+ cP G+ cos 0) cos rp] + O(k5)} 

+ O(1/R2). (134) 

These two results are in agreement with the ones 
obtained by Lord Rayleigh.1 

CONCLUSIONS 

To summarize, the main result of the paper was the 
derivation of coupled Fredholm integral equations 
of the second kind for the electric and magnetic fields 
scattered by a perfectly conducting surface when 
immersed in an arbitrary incident field. These integral 
equations are of such a form as to admit of solution 
in a standard Neumann series when k, the wave­
number, is sufficiently small. The technique is the 
electromagnetic analog of a recently developed 
method of solving acoustic scattering problems.14,15 

Here two dyadic potential functions play the role that 
the potential Green's functions had in the scalar case. 
The derivation and definition of these fundamental 
dyadics constitutes a large part of the present work. 

No proof of convergence of the iterative solution 
of the integral equations has been given and this 
remains as an important subject for future work. 
Support for the conjecture that iteration does yield a 

sequence which converges to the correct result is 
provided by the application of the method to the 
specific problem of scattering by a sphere. Not only 
are the correct first few terms obtained in the low­
frequency expansion of the scattered field, but also the 
calculation of the fourth term was carried out without 
the appearance of divergent integrals. This is signifi­
cant since Stevenson has pointed out that his special 
method, as well as that of Tai,l7 breaks down at the 
fourth term. 

Whenever the requisite potential problems can be 
solved, the present method offers a direct means by 
which the electromagnetic scattering problem can be 
solved at low frequencies. The method is more system­
atic than the corresponding method of Stevenson 
and produces expressions for the field directly which 
are valid in both near and far zone. While some of the 
calculations required in Stevenson's approach are 
eliminated, those remaining are by no means trivial. 
The question of whether the present method can be 
further simplified has importance from a practical 
as well as an aesthetic point of view since tractability 
of calculation, rather than availability of potential 
solutions, has proven to be the real limitations of 
Stevenson's method. Central to this question is a 
study of the fundamental dyadics in an attempt to 
express them in simpler form. The example considered 
in the present paper, e.g., Eq. (112), offers a hint of 
the simplification possible. No general results are yet 
available. Another open question is whether the 
present method can be extended to include scattering 
from dielectric bodies. 
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APPENDIX A: DYADIC RELATIONSHIPS 

The following dyadic relationships have been used 
in this work.l8 

Multiplicative Relationships 

a and b are vectors and A a dyadic: 

(a x b) • A = a· (b x A) = -b· (a x A), (AI) 

a x (b x A) = b(a • A) - A(a • b). (A2) 
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Derived Relationships 

1 is the identity dyadic and rp a scalar function: 

V • (a x A) = (V x a) • A - a • ·(V x A), (A3) 

V. (ab) = (V. a)b + a • Vb, (A4) 

V x (ab) = (V x a)b - a x Vb, (A5) 

V x (rpl) = Vrp x I, (A6) 

V x V x (rpl) = VVrp - IV2rp. (A7) 

APPENDIX B: EXPLICIT DETERMINATION 
OF THE FUNDAMENTAL DYADICS 

To properly take into account the singularity due 
to the magnetic dipole source [(44)], in Eqs. (55)-(59) 
let 

E!!) = V X (-1/41T IR - R'I) + E!!!(R / R') (Bl) 

and 

H~) = YV x V x (-1/41T IR - R'D + H~!(R / R'), 

(B2) 

where E!!! and H~: are C2(V). Then (56) and (57) 
imply 

V x H(O)(R) = 0 m, , ReV, 

V x EW(R) = ZH(O)(R) ReV. m,. fflr' 

(B3) 

(B4) 

The dyadic H~) is the magneto static field due to three 
orthogonal static magnetic dipoles, and its expression 
in terms of potential functions follows the corre­
sponding treatment for a single dipole. Thus (B3) 
implies that 

3 
H(O) = _Y"" V..I.(O) 8. 

mr k 'f'mlr 1 
j=1 

(B5) 

and, taking the divergence of (B4), we conclude that 

V2.J.(O). = 0 J. = 1 2 3 (B6) 'f'm3,.' , , • 

Furthermore, the potential functions rp~]r are regular 
at infinity in the sense of Kellogg. This follows from 
examination of the low-frequency expansion of the 
Stratton-Chu integral representation of the scattered 
field [e.g., see Ref. 4a]. Substituting (B2) and (B5) in 
the boundary condition on H~) [(59)] yields 

yft •• V. x V. x (- 41T IRsl- R'I) 

3 
"" .L(O) A 0 ( 7) - Y k ft •• V.'f'mj,a j = B 

or, with (A 7), 
1=1 

0..1.(0)( /')_~[(A.V)(_ 1 )] on. 'f'mir R. R - an. aj 
• 41T IR. _ R'I ' 

j = 1,2,3. (BS) 

In terms of N(e)(R / R'), the exterior potential Green's 
function for Neumann boundary condition on S 
[see (62)-(64)], the potential functions rp~:r may be 
expressed as 

rp~~,(R / R') 

= - r N(e)(R./ R) 00 rp~~,(Rs / R') ds Js n. 
= 81 • V' r N(e)(R./ R) ~ (_ 1 ) ds 

Js on. 41T IR. - R'I 
= 8j • V' N~e)(R / R'). (B9) 

The fact that 

V.(1/IR. - R'I) = - V'(1/IRs - R'D (BIO) 

was employed in deriving (B9) and will be used 
frequently in succeeding calculations. 

With (B5) and (B9), (B4) becomes 

3 

V x E!!!(R) = - ! [V rp~t]aj = - VV' N~')(R / R'). 
j=1 

(Bll) 

Stevenson20 has shown that the necessary and suffi­
cient conditions for the vector equations 

V X EW. (R) = _V..I.(O). 
m1" 'f'm,,. (B12) 

to have a solution are 

V 2..1.(0) = 0 
'f'mir , ReV, (B13) 

and 

Is ft •• V.rp~t ds = O. (B14) 

The first condition is satisfied by virtue of (B6), and 
the second is satisfied since, with (BS), 

Is ii •. Vsrp~t ds 

= -a j • V' r ii . V (_ 1 ) ds 
Js' s 41T IRs - R'I 

(B15) 

and, by the divergence theorem, 

Is ft •• v.( - 41T IR: _ R,J ds = 0, R' E v. (B16) 

The complete solution of (B12) is 

E(ll (R) = - ~V 
mi, 41T 

1 (rp(O) (R / R') - NW.(R / R'») x mi,' ml' ft. ds 
SIRs - RI 

+ VG!::(R I R'). (B17) 
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The first term on the right is a particular solution of 
(BI2),4a.2o where N;,;} is an interior Neumann potential 
function for S, i.e., 

V'2N~~(R I R') = 0, REV;, R' E v, (B1S) 

D •• V.N~~(R.I R') = Os • Vs<p~t(Rs I R'), 

Rs E S, R' E V. (B19) 

This is a standard interior Neumann problem and has 
a solution provided that 

IsO.' V.N~~(Rs I R') ds = 0, (B20) 

a condition guaranteed by (BI4) and (BI9). In fact, 
with (BS) it is seen that the solution of this problem 
is simply21 

N~~(R I R') = Itj • V'(1/47T IR - R'D, 

REV;, R' E V. (B21) 
Thus, with (B9), 

E(l) (R) = _l.. (a .• V')V 
mir 47T ' 

x r N<e)(Rs I R') fts ds + VG~:(R I R'), 
Js IRs - RI 

(B22) 

where N(e) is the exterior Neumann function [(62)­

condition 

Lns• VsG:::CRs I R') ds = 0, j = 1,2,3, (B26) 

is employed. This arises from the representation (B22), 
the fact that E~:r is expressible as a curl [(58)], and 
Stokes' theorem. 

In summary 

E~)(R I R') 

= V x (_ I ) 
41T IR - R'I 

+ ± (_ ~ (a
j

• V')V x r N<e)(Rs I R') fts ds 
i=1 41T Js IRs - RI 

+ VG::XR I R'»)a j , (B27) 

where N(e) is an exterior Neumann potential function 
for S [(62)-(64)] and G~~ are exterior Dirichlet 
potential functions for S [(B24)-(B26)]. 

The Dyadic H~ll in Tenns of Potential Functions 

The procedure for finding H~l) is similar except that 
the singularity enters in a different way hence different 
potential functions arise. Thus, let 

H~ll(R I R') = V x (-1/41T IR - R'D + H~~)(R I R'), 

(64)]. The second term on the right in (B22) or (BI7) with (A7) and (51) and the fact that 
is a solution of the homogeneous equation 

(B28) 

V X E(1). (R I R') = ° mJr • (B23) 

That G!:~ are potential functions follows by taking the 
divergence of (B22) and noting that E~:r is the curl of 
a vector [(5S)] and hence divergence free. That G~: is 
regular at infinity in the sense of Kellogg follows, as 
with <p~: , from an examination of the Stratton-Chu 
integral ;epresentation of E:;:r' The behavior of G~: 
on S is determined from the boundary condition (59) 
on E~). Hence G~: are standard exterior Dirichlet 
potential functions, i.e., 

V'2G::XR I R') = 0, 

ft x VG~:(R I R') 

=1.. ftxV 
41T 

R,R'EV, (B24) 

x ( Ilj + (a; . V') r N(8)(R.1 R') ft. dS), 
IR - R'I Js IRs - RI 

RES, R' E V, (B25) 

G::~(R I R') regular at infinity. 
To completely determine G~~ , the additional 

V'2( -1/47T IR - R'I) = c5(R I R'), (B29) 

V x H~~)(R I R') 

= - VV( -1/47T IR - R'D - YE~O) (R I R'). (B30) 

Taking the curl of (B30) and using (4S) yields 

V x V x H~~)(R I R') = 0, (B31) 

which is the desired result (17). Furthermore, (48) 
implies that 

3 

E~O)(R I R') = - z I [V <p~~)(R I R')]aj, (B32) 
i=1 

which in combination with the divergence of (B30) 
yields 

3 

I [V'2<p~~)(R I R')]aj = Vb(R I R') 
j=l 

(B33) 

or 

V'2<p~~)(R I R') = 8; . V(l(R I R'), j = 1,2, 3. (B34) 

From (53) and (B32), the boundary condition satisfied 
by these scalar functions is 

ft x V<p~~)(R I R') = 0, RES, j = 1,2,3, (B35) 
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which, by Stokes' theorem for scalar fields, implies 
that 4>~~) is a constant on S with respect to R though 
it may still depend on R'. By (B34), 4>~~/ may be 
written in the form 

4>~~)(R I R') = Il j • V( -1 j47T IR - R'I) + 4>~~~(R I R'), 

(B36) 
where 

\'724>~~!(R I R') = 0, (B37) 

in which case the boundary condition reads 

4>~~!(R. I R') = -Il j ' V.(-lj47T IRs - IR) + Cej' 

Rs E S, R' E V, (B38) 

where Cej is the constant value of 4>~~) on S. The 
functions 4>~~) (R I R') are regular at infinity in the 

. r 
sense of Kellogg by the same argument as before 
(examination of the Stratton-Chu integral representa­
tion ofE~~» and hence may be expressed everywhere in 
V in term; of values on S by the formula 

4>~~!(R I R') = f 4>~n(R. I R') ';J0 Ge(R. I R) ds, (B39) Js un. 
where de) is the exterior potential Green's function 
for Dirichlet boundary condition on S [(70)-(72)]. 
Substitution of (B38) in (B39) gives 

4>~~!(R I R') 

= a .. V' f (- 1 )~ G(e)(R. I R) ds 
3 Js 47T IR. - R'I on. 

+ Cej r ';J0 G(e)(R. I R') ds 
Js un. 

= -(aj . V')G~e)(R I R') 

+ Cej f ~ G(el(R. I R') ds. (B40) 
Js an. 

The conductor potential U(R) is defined as an ex­
terior potential function, regular at infinity and taking 
on the value 1 on S (Ref. 13, p. 330). Expressing the 
conductor potential in terms of the Dirichlet Green's 
function yields 

U(R) = ( .l.- GCe/(R.1 R) ds. (B41) 
Js an. 

Thus (B40) may be rewritten 

4>~~!(R I R') = -(ai • V')G~e)(R I R') + CejU(R). 
(B42) 

This equation, with (B36) and (70), leads to an expres­
sion for the full potential 4>~~) : 

4>~~) = -(aj . V')G(e)(R I R') + CejU(R). (B43) 

The constants Cej are determined from the condition 

Is fiB • v.4>~~)(R. I R') ds = 0, (B44) 

which is a consequence of (51), (B32), and Stokes' 
theorem. It is a mathematical statement of the 
physical fact that the total induced static charge in 
the perfectly conducting surface must be zero. 
Substitution of (B43) in this expression gives 

C ei = Il j • V'U(R')( r ~ U(R.) dS)-1 (B45) 
Js an. 

The electrostatic capacity C of the surface S is 
defined (Ref. 13, p. 330) as 

1 1 0 C = - - U(R.)ds, 
47T sans (B46) 

hence 

and 
Cei = aj • V'U(R')j47TC (B47) 

4>~~) = -(aj • V')[G(e)(R I R') - U(R)U(R')j47TC], 

(B48) 

4>~~! = -(ai • V')[G~e\R I R') - U(R)U(R')j47TC]. 

(B49) 

The electric field dyadic (B32) can then be written 

E~O)(R I R') 

= Z ± V (a
f 

• V')Ge(R I R') - a} . V' U(R') U(R») II} 
j=1 47TC 

= ZVV' (G(e)(R I R') _ U(R) U(R'») . (B50) 
47TC 

This is the electric field due to three orthogonally 
crossed static electric dipoles with moments defined 
by (45). 

The dyadic H~l) can now be found. Substituting 
(B50) in (B30) and making use of the definition in 
(70)-(72) of G(e) yields 

V x H~;)= -VV'[G~e)(R I R') - U(R)U(R')j47TC]. 

(B51) 

This dyadic equation can be broken into the three 
vector equations 

V x H!}! = -(aj • V') 

or, with (B49), 

x V[G~el(R I R') - U(R)U(R')j47TC], 

j = 1,2,3,. (B52) 

V x H!}~ = V 4>!~!, j = 1,2, 3. (B53) 
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The necessary and sufficient conditions fqr these 
equations to have solutions, (B13) and (B14), are 
satisfied by virtue of (B37), (B44), and (B16). The 
complete solution of (B53) is 

H~~~(R I R') 

= ~ V x r (<p~~~(R.1 R') - N~~'<R.I R'») D. ds 

41T Js IRs - RI 

+ VN~~)(R I R'). (B54) 

Just as in the corresponding solution of the equation 
for E:;1, [(B17)], the first term on the right is a partic­
ular solution of (B53), and the second is a solution 
of the homogeneous equation 

V x H~}~(R I R') = 0, R, R' E V. (B55) 

The functions N!~~(R.I R') that appear in (B54) are 
interior potential functions satisfying the boundary 
condition 

D •• V.N~~~ (Rs I R') 

= fi s ' V.<p!~!(Rs I R') 

= -Ds' Vs(aj • V') 

X [G~e)(Rs I R') - U(Rs)U(R')j41TC], 

Rs E S, R' E V. (B56) 

It is convenient to introduce an associated interior 
Neumann function N!i)(R I R') such that 

t72N<ei)(R I R') = 0, R TJ" R' V v E ~i' E, (B57) 

fi • V N(;)(R I R') sse s 

= -fis' Vs[G<e)(Rs I R') - U(Rs)U(R')j41TC]. (B58) 

The definitions of U(R) [(B41)] and C [(B46)] suffice 
to show that 

which is a necessary condition for the existence of 
N!i). Since Ij41T IR - R'I is a solution of (B57), the 
functions N:;! may be written as 

N~~~(R I R') = aj • V'[N~i)(R I R') - 1/41T IR - R'I]; 

(B60) 

hence, the first integral on the right in (B54) can be 

written as 

V x r (<P!~!(Rs I R') - N~~~(Rs I R'») Ds ds 

Js IRs - RI 

= V x Js (aj • V') 

X (-G<e)(Rs I R') + U(Rs)U(R') - NW(R I R') 
r 41TC e s 

+ 1 ,) D, ds 
41T IRs - R I IRs - RI 

V i A V' N~i)(Rs I R') A d 
= - x a j • Ds S. 

sIRs - RI 
(B61) 

This last expression was obtained through the bound­
ary conditions on G<e) and U and using the fact that 
Gauss' theorem for scalar fields implies 

i Ds 
V x ds = 0. 

siRs - RI 
(B62) 

This fact also indicates that, while (B57)-(B59) specify 
N!i) (R I R') only to within an arbitrary function of R', 
this arbitrary function does not contribute to (B61). 
Thus, (B54) may be written 

H (1) - -.L (A V')V i N~i)(Rs I R') A d 
ej, - - a j • x Ds S 

41T sIRs - RI 

+ VN~~)(R I R'). (B63) 

The functions N!;) (R I R') are exterior potential 
functions determined so that the boundary condition 
(53) on H~1l will be satisfied. Thus, 

(B64) 

N!~) (R I R') regular at infinity in the sense of Kellogg, 
and 

fi • V N~~>CR I R') 

(
a. 1 

= fi· V x j + - (a .• V') 
41T IR - R'I 41T j 

i N(i)(R I R') ) x e , Ds ds , 
SIRs - RI 

RES, R' E V. (B65) 

In terms of N<e), the Green's function for the Neumann 
problem, we have 

N~~)(R I R') = - Is N<e)(Rs I R)fis • VsN~~)(Rs I R') ds. 

(B66) 
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In summary 

H~ll(R I R') 

= V x (_ I ) 
47T IR - R'I 

+ ± (- ~ (a
j

• V')V xf N~il(Rsl_R')os ds 
}=1 47T \Rs- R\ 

+ VN~~l(Rj R'»)a j , (B67) 

where N!il is an interior Neumann potential function 
[(B57)-(B59)] and N!~l are exterior Neumann poten­
tial functions [(B64) and (B65)]. 

APPENDIX C: PROOF OF THEOREM 3 

Substitution of (91)-(94) in (89) and (90) leads to 
the following equations22

: 

ik[Zh(R') - R' x e(R')] 

= -k2fv(e + ZR x h). E:;l dV 

+ ik l}V x (R x e)] . E~l dV 

+ f}O x e) . (V x E~l) dS (CI) 

and 

-ik[Ye(R') + R' x heR')] 

= -k2L(h - YR x e). H~ll dV 

+ ikL[V x (R x h)] • H~ll dV 

- ikL[O x (Ye + R x b)]· H~l) dS. (C2) 

By the identity (A3) the second volume integral of 
(Cl) can be written in the following form: 

fv[V x (R x e)] . E~l dV 

= fvV. [(R x e) x E~l] dV 

+ f/R x e) . (V x E~l) dV. (C3) 

By (BI) and (BII) and application of the divergence 
theorem (24) to the first integral on the right, (C3) 
becomes 

fv[V x (R x e)] • E~l dV 

=1 Ii· [(it x e) x E~l] dS 
s+s' 
-f/R x e) • VV'N(el dV. (C4) 

By the boundary condition 0 x E:;l = 0 and (AI), 
the integral over S in (C4) vanishes. Application of 
(,-<\4) to the last integral results in 

L[V x (R x e)] • E~l dv 

= r o. [(R x e) x E~l] ds J.." 
-Lv. [(R x e)V'N(el] dv 

+ Lv. (it x e)V'N(e l dv, (C5) 

which can be further written as 

fv[V x (it x e)] • E~l dv 

= r Ii. [(R x e) x E~l - (R x e)V'N(e)] ds 
JS' 
+ Is R . [(0 x e)V' N(el] ds 

- ik fvR. (Zh - R x e)V'N(el dv, (C6) 

by means of the div.ergence theorem, standard vector 
identities, and, (91). The integral over S' can be 
evaluated in the standard manner (see Sec. II), the 
result being -R' x e(R'); thus Eq. (C6) becomes 

fv[V x (R x e)] • E~l dv 

= -R, x e(R') + LR. [(0 x e)V'N(el] ds 

- ikZ L(R. h)V'N(e l dv. (C7) 

Substitution of this expression in (CI) yields the 
result 

ikZh(R') = -k2L(e + ZR x h). E~l dv 

+ k2ZV'L (R • h)N(el dv 

+.ik fsR. [(0 x e)V'N(el] ds 

+ fs(O x e). V x E~l ds. (C8) 

Following the same treatment used in deriving (85) 
and using (92) rather than Maxwell's equations, we 
can write the last integral of the above expression as 

L (0 x e) . V x E~l ds, 

= -ikZ L(n. b)V'N(el ds 

- ik fsR. [(0 x e)V'N(el] ds. (C9) 
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With this substitution (C8) becomes 

heR') = ik L(Ye + R x h). E~l dv 

- ikV' { (R • h)N(el dv 

+ ik V' U(R') r YR. e(R) dv 
47TC Jv 

+ ikYV' r R. e(o<el _ U(R)U(R'») dv. (C13) 
Jv 47TC 

Jv 
- V'L(D' h)N(el ds, 

Substitution of this expression in (C2) yields the 
(CtO) desired result 

which is the desired result. 
The second volume integral in (C2) can be modified 

in an analogous manner as the corresponding integral 
in (CI) to give 

fv {V x [R x h(R)]} • H~ll(R I R') dv 

-R' X b(R') 

+ Is D •• nR• x h(R.)] x H~ll(R. I R')} ds 

-Is D' [Rs x heRs)] 

X v' ( G(el(R. I R') _ U(;~~(R'») ds 

+ ikYV'fvR. e(R) 

X (G(el(R I R') - U(R)U(R'») dv. (CIl) 
47TC 

Since G(el(R. I R') = 0 and U(R.) = I, this becomes 

fv{V x [R x h]}· H~ll dv 

= -R' X b(R') + LDs ' [(R. x h) x H~ll] ds 

+ V'U(R') { Ds' (R. x h) ds 
47TC Js 

+ ikYV' ( R . e(o<el _ U(R)U(R'») dv. (CI2) 
Jv 47TC 

With the divergence theorem and (92), this can be 
written as 

L[V x (R x h)] • H~ll dv 

= -R' X heR') + Is Ds • [(R, x h) x H~ll] ds 

e(R') = -ik L(Zh - R x e)· H~ll dv 

_ ikV' r R.e(o<el + U(R') - U(R)U(R'») dv 
Jv 47TC 

(C14) 
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A functional integral representation for the space-time Hopf characteristic functional is derived from 
the probability theory for a statistical ensemble of velocity fields that satisfy the Navier-Stokes equation 
for boundary-free incompressible fluid flow. The functional integral representation involves a pair of 
real vector field integration variables denoted by u and v, and the evaluation of the integral is performed 
in two steps. First, the integration over the field variable u is effected exactly in the general case by 
applying methods of explicit functional integration. Second, the resulting functional integral over the field 
variable v is reduced to a form amenable to specialized analysis by applying a suitable transformation 
of the integration field variable v -+ z. Specializing to mathematically defined "C-dominant turbulence," 
the final functional integration over the field variable z is effected exactly and yields a characteristic func­
tional of Gaussian form. The two-point velocity correlation tensor for C-dominant turbulence is then 
obtained from the characteristic functional. 

I. INTRODUCTION the Hopf formulation, but mathematical difficulties 
All modern approaches to the theory of incom- have been associated with this second line of research 

pressible fluid turbulence take the statistical ensemble owing to the underdeveloped state of functional 
hypothesis of Taylort.2 as a fundamental postulate differential equation theory. 
and have the common objective of computing physi- The present paper reports recent mathematical 
cally significant velocity correlation tensors. However, results that advance the second line of research. We 
there have emerged two essentially different lines of have obtained a functional integral representation 
research which aim at the formulation and solution for the general solution to the Hopf functional differ­
of a useful statistical theory for incompressible fluid ential equation in the space-time version of the theory, 
turbulence. and have shown that this integral representation can 

The first line of research has its genesis in the work be evaluated by applying methods of functional cal­
of Chandrasekhar,3 the original author to apply an culus.9 Details of this work are given here. 
ad hoc closure approximation scheme to the infinite The organization of the paper is as follows. In 
hierarchy of correlation tensor equations and to Sec. II we fix notation and recast the Navier-Stokes 
obtain a nonlinear~integro::"differential equation for equation for boundary-free incompressible fluid flow 
the two-point velocity correlation tensor. Authors into the form of the integral equation (15) which 
have followed Chandrasekhar with more sophisticated incorporates a generically prescribed initial velocity 
ad hoc closure approximation schemes which lead field. The latter Navier-Stokes integral equation 
to sets of1coupled integro-differential equations for plays a central role in Sec. III, where we develop a 
velocity correlation tensors. To what extent such ad general theory for space-time probability distributions 
hoc closure approximation schemes are meaningful and characteristic functionals associated with a 
in the context of the exact complete theory has been statistical ensemble of velocity fields. The functional 
investigated by Wyld.4 The detailed analysis of Wyld integral representation (49) for the space-time 
makes it evident that what is left out is not necessarily characteristic functional is derived from the proba­
small compared to what is included by the various bility theory. In Sec. IV we perform a general partial 
ad hoc closure approximation schemes. evaluation of the functional integral (49), the integra-

The second line of research has its genesis in the tion over the field variable u in (49) being effected 
work of Hopf,5 the original author to derive a func- exactly in the general case by applying methods of 
tional differential equation for the dynamical evolution explicit functional integration. The resulting func­
of the probability distribution over the statistical tional integral over the field variable v is reduced to 
ensemble of velocity fields and to obtain a rigorous a form amenable to specialized analysis by applying 
(closed and complete) mathematical formulation, free a suitable transformation of the integration field 
of any ad hoc statistical approximation. Authors have variable v -... z, and we arrive at expression (69) for 
followed Hopf with partially successful attemptsO•7 the characteristic functional. In Sec. V we complete 
to solve the functional differential equation and to the evaluation of the characteristic functional for the 
develop the more tractable space-time version of the special case of "e-dominant turbulence," defined by 
probability theory.s There is no physical deficiency in the mathematical condition (71). The final functional 

812 
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integration over the field variable z is effected exactly 
and yields the characteristic functional (79), which 
manifests a Gaussian form. We then obtain the two­
point velocity correlation tensor (89) for C-dominant 
turbulence with the forms (81) and (82) for the 
disposable physical quantities. In the Appendix we 
derive the general expression (AS) for the two-point 
velocity correlation tensor associated with weak 
turbulence. 

II. NAVIER-STOKES EQUATION FOR 
BOUNDARY -FREE FLOW 

We consider an unbounded spatial domain with 
Cartesian coordinates x = (Xl' X 2 , x 3) and a semi­
infinite temporal domain with the time coordinate 
1 ~ O. The pressure term can be eliminated from the 
Navier-Stokes equation for the free flow of an in­
compressible fluid, and we have the governing 
dynamical law 

LxU + (u. Vu)tr = 0, (I) 
with 

L == £.. - yV2 (2) 
'" 01 

and the velocity field 

u = (Ul(X, t), U2(X, t), U3(X, t» 
satisfying the subsidiary condition that expresses 
incompressibility of the fluid, 

V·u = O. (3) 

In Eq. (1), "tr" denotes the transverse (solenoidal) 
part of the inertial term, the transverse part of a 
generic vector field w = w(x, t) being defined as 

wtr = w(x, t)tr = W - V[V-2(V • w)] 

== W(x, I) + V d y. (4) J 
V . w(y, t} 3 

417 Ix - yl 
Because we have 

V· [(u • V)ur == 0, 

the subsidiary condition (3) is compatible with the 
integro-differential dynamical equation (1) for all 
t ~ O. Assuming that the velocity field is prescribed 
at t = 0, 

u(x, 0) == fi = fi(x) (5) 

with fi solenoidal, 
v·u= 0, (6) 

it is convenient to recast (1) in the form of an integral 
equation which incorporates the initial data (5), 

u,.{x, t) - 1'f G"a,lx - y, t - s)uiy, s)u,ly, s)d3y ds 

= il,,(x, t), (7) 

where Greek subscript indices (referring to the 
Cartesian spatial axes) run I, 2, 3 and the summation 
convention applies to repeated indices. In (7) we have 
introduced the quantities 

il,.{x, t) == (4mtr i I u,,(y) exp (-Ix - YI2/4yt)d3y 

= l7-i J u,,(x + 2(vt)tA)e-I>'12d3;' (8) 

and 

( _ 1 (OG"iX, t) oG"p(x, t») 
G"aP x, t} = - - + ---'::!:...:...~ 

2 oXp oXa 
(9) 

in which 
__ o2Jl(r, t} 

Ga.ix, t) = bapG(r, t} + ,(10) 
oXaoxp 

G(r, t) == (4mt)-![exp (-r2/4vt)], for t> 0, 

== 0, for t ~ 0, 

(11) 

Jl(r, t) == -V-2G(r, t) = - G(s, t) ds 2vtir 
r 0 

1 00 (-r2J4yt)n 
= t t I , for t > 0, 

417 (yt) n=O n! (2n + 1) 

= 0, for t ~ 0, 

(12) 

where r == Ixl. To prove that (7) is equivalent to Eq. 
(1) subject to (5), we note that the Green's function 
(11) satisfies the inhomogeneous diffusion equation 

(13) 

while the vector field (8), solenoidal as a consequence 
of (6), is the solution to the homogeneous diffusion 
equation 

Lxii = 0 (14) 

subject to the initial value ii(x, 0) = fi(x); hence, we 
obtain Eq. (1) by applying the differential operator (2) 
to Eq. (7). 

There are two important notational simplifications 
that facilitate analysis based on Eq. (7). First, we 
abbreviate the space-time coordinates by X = (x, I) 
and the space-time infinitesimal volume element by 
dx = dXl dX2 dX3 dt, so that Eq. (7) takes the form 

u,,(x) - f G"a/J(x - y)uaCy)u/J(Y) dy = il,,(x) , (15) 

with the space-time integral understood to be over aU 
y and over the semi-infinite interval for the time 
component of y, the three-index Green's function (9) 
vanishing for negative values of the time argument. 
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Second, we may express Eq. (7) or (15) symbolically 
as 

u - G:uu = 0, (16) 

where the colon denotes a double contraction on 
tensor indices together with the associated integration 
over space-time in (15). The symbolic notation in (16) 
makes it possible to display many of the equations of 
the theory in a transparent form. For example, the 
iteration solution series to Eq. (7) or (15) is exhibitt<d 
neatly as 

u = 0 + G:oo + 2G:o(G:oo) 

+ 4G :o(G: u(G: 00» + G: (G: oo)(G: 00) 

+ (terms of higher order in 0), (17) 

a formal solution which is valid if the u-to-o corre­
spondence provided by (15) is one-to-one and useful 
if the quantity G:oo is small compared to 0 for all x 
and all t ~ 0, as for the velocity fields in a "weak 
turbulence" statistical ensemble (see Appendix A). 

III. PROBABILITY DISTRIBUTIONS AND 
CHARACTERISTIC FUNCTIONALS 

Underlying the mathematical description of incom­
pressible fluid turbulence is the postulate that a statis­
tical ensemble of velocity fields can be evoked for the 
theoretical prediction of observable averages (expec­
tation values) of velocity field components. The 
initial velocity fields (5) are prescribed statistically in 
terms of a probability distribution Po[o], a non­
negative real functional of 0 = o(x) concentrated on 
solenoidal fields in accordance with (6), so that 

(V. o)Po[o] = 0 

for any arbitrary real vector field 0 = o(x). With D(o) 
denoting a displacement-invariant infinitesimal volume 
element in the 0 function space, the probability of 
finding the initial velocity field with the specific form 
o = o(x) is given by Po [o]D(o). A heuristic way of 
expressing the infinitesimal volume element is 

D(o) == (const) II [dUl(X) dU2(X) dulx)], 
all x 

but the property of displacement invariance 

D(o + w) = D(o) , 

for any w = w(x) independent of 0, is adequate to 
fix· D(o) in practical computations to within a con­
stant numerical prefactor which is subsequently 
determined by the probability normalization condition 

(18) 

Rigorous mathematical meaning obtains for the left 
side of (18) as a functional integral over all 0 with 
displacement-invariant measure. lO Likewise, rigorous 
mathematical meaning obtains for the generic 
expectation value formula 

(F[o]) == f F[o]Po[o]D(o) (19) 

for a generic functional F[o]. 
The probability distribution Poco] for the statistical 

ensemble of initial velocity fields at t = 0 induces a 
probability distribution for the statistical ensemble of 
vector fields (8) in space-time, because 0 = o(x, t) == 
o(x) and 0 = o(x) are related generically in a one-to­
one fashion by (8). To compute the expectation value 
of an arbitrary functional of 0, we simply evoke (8) 
and formula (19). Thus, for homogeneous turbulence 
the probability distribution Poco] is invariant under 
translations of space x -+ x + a, and we find the 
two-point correlation tensor 

SflY{X', x") == (u,.(x')u.(x"» 

= 1T-3(~ - b v2
,) 

::l '::l I fl' x 
vXflvX, 

x J hex' - x" + 2(vt')lA,1 - 2(vt")lA,") 

x e-IA'12_IA"I"d3.i!'d3.i!" 

= [41TV( t' + t")1-i (~ - b v2
,) 

::l l::l I fl' x 
vXflvX, 

x J h(x' - x" + y) exp [-lyI2/4v(t' + ('1)]d3y, 

(20) 

if the two-point correlation tensor at t ' = t" = 0 is 
prescribed as 

(u,.(x')u.(x"» == (ax~;x' - V!,bfl .) h(x' - x"). (21) 
fl • 

It should be noted that the real scalar function hex) 
in (20) and (21) is required to be nonnegative convex, 
since we have 

< 1 f 6(x)f(x)d3x 12) 
= f (U,.(X')U,.(x"» /(x l )/(x")d3x' d3x" 

= 2fh(X' - x") o/(x') o/(x") d3x'd3x" > 0 
ax~ ox: -

for all arbitrary real scalar functionsf(x) that vanish 
at spatial infinity. Indirectly then, via (8) and (19), 
the space-time vector fields 0 are endowed with a 
probability distribution rP [0], a nonnegative real 
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functional of u = u(x) concentrated on solenoidal 
fields satisfying the homogeneous diffusion equation 
(14), 

(V. u(x»rP [u] = 0 and [1: .. u(x)]rP [u] = 0 

for any arbitrary real vector field u = u(x). The 
probability of finding the vector field (8) with the 
specific form u = u(x, t) is given by iP [u]~(u), where 
~(u) denotes a displacement-invariant infinitesimal 
volume element in the function space of the ii's. In 
heuristic symbolic notation, we have 

~(ii) = (const) IT [du1(x) du2(x) dua(x)] 
all x 

with ~(ii + w) = ~(ii) for any w = w(x) independent 
of ii, and the probability normalization condition is 

J rP [ii]~(ii) = 1, (22) 

a functional integral over all ii. From the one-to-one 
correspondence provided by (8),it follows that 

rP [omen) = P[u]D(u) (23) 

for a pair of fields related by (8). Hence, the expecta­
tion value of an arbitrary functional of 0 can be com­
puted by evoking (8) and (19), or, alternatively, by 
using the generic formula 

(F[o]) == f F[o]rP[ii]~(o). (24) 

In particular, we have the characteristic functional 
associated with rP [ii] given by 

<P[v] == < exp if vex) • u(x) dX) 

= f (exp if vex) • ii(x) dX) iP[ii]~(ii), (25) 

where the ordinary space-time integration in the 
exponential is understood to be over all x and all 
t ~ O. The characteristic functional (25) is therefore 
a functional Fourier transform of the probability 
distribution iP [ii]. Expectation values (24) are ex­
tracted from (25) by functional differentiation, 

(F[u]) = (F[ -iblbv]<P[v]),=o. (26) 

Thus, for example, the two-point correlation tensor 
(20) is obtained from <P[v] as 

S!'.(x', x") = _ ( b
2

<b[vJ ). (27) 
(Jvix')bvv(x") v=o 

Because the vector fields ii = ii(x) that make a finite 
contribution to the functional integral (25) satisfy (14) 
and are solenoidal, we have the characteristic func-

tional (25) satisfying the equations 

I: b<b[v] - 0 
.. bvix) - , 

~ (J<P[v] = o. 
ax!, bvix) 

(28) 

(29) 

In addition to being a solution to Eqs. (28) and (29), 
the characteristic functional (25) must satisfy certain 
holonomic and nonholonomic conditions, such as 

<1>[0] = I, 1<P[v]1 ~ I, <b[v]* = <P[-v], etc., 

which stem from the fact that rP [ii] is real, non­
negative, and normalized with respect to ~(ii) 
according to (22). Corresponding to a Gaussian 
probability distribution, we have a characteristic 
functional of the form 

<P[v] = exp -! JJVolX')S~p(x" x")vp(x") dx' dx", 

(30) 

in which S!'v(x', x") == Sv!,(x", x') is a real symmetric 
tensor. Since the functional derivative of (30) is 

b<P[v] f ' bvp(x) = - S!'p(x, x )vp(x') dx'<P[v], (31) 

it follows that (28) and (29) are satisfied if 

and 

oS!'.(x', x") = 0 = oS!'.(x', x") 

aX' ax" I' v 
(32) 

1:""S!'v(x', x") = 0 = 1:", .. S!'lx', x"). (33) 

The solenoidal property of S!'.(x', x") displayed by 
(32) shows that the characteristic functional (~O) 
depends only on the transverse part of v, <P[v] == 
<1>[vtr

] for all v, while (33) shows that <b[v + I:~w] = 
<1>[v] for all w = w(x) with L~ denoting the formal 
adjoint of the operator (2). For homogeneous 
turbulence the S!'v(x', x") in (30) equals the two­
point correlation tensor (20) by virtue of (27), and it 
is readily verified that the final member in (20) satisfies 
Eqs. (32) and (33). Moreover, S!'vCx', x") is then a 
positive-definite matrix kernel with respect to solenoi­
dal v (== vtr

) in (30), because hex) is a nonnegative 
convex real function in (20). 

The probability distribution Po[ii] for the statistical 
ensemble of initial velocity fields at t = 0 also induces 
a probability distribution for the statistical ensemble 
of physical velocity fields u = u(x) in space-time, 
IP [u], a probability distribution concentrated on 
solenoidal fields satisfying the Navier-Stokes equation 
(1), 

(V. u)lP[u] = 0 and {C .. u + [(u. V)u)tr}lP[u] = 0 
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for any arbitrary real vector field u = u(x). By 
definition, the probability of finding the velocity field 
with the specific form u = u(x) is fP [u]~(u). If for a 
prescribed u = u(x) a unique u = u(x) exists as a 
solution to Eq. (1) for all t ~ 0, or as a solution to 
Eq. (15) for all t ~ 0 with 0 = o(x) prescribed, then 
the correspondence between u and 0 is one-to-one, 
and it follows that the probability IP [u]~(u) equals 
the probability rP [o]~(o) for a pair of fields related 
by (15). The mathematical theory for the Navier­
Stokes initial value problemll does indeed suggest 
existence of a unique solution for all t ~ 0 if the 
initial velocity field at t = 0 is suitably smooth. 
However, the precise form of a smoothness condition 
on the initial velocity field u = u(x) for existence of a 
unique solution u = u(x) for all t ~ 0 has not been 
established, and therefore it is unknown whether a 
unique solution is always associated with an initial 
velocity field realizable in nature. Taking into account 
the possibility of nonuniqueness, which would 
feature a local breakdown of regularity at a finite 
value of t and bifurcation of certain solutions to the 
Navier-Stokes initial value problem, we write 

eA[ullP[u]~u) = rP[o]~(o), (34) 

where A[u] is a real functional of u that vanishes 
identically if and only if the u-to-o correspondence 
provided by (15) is one-to-one. More generally, the 
functional A[u] must be indefinite in sign as u ranges 
over the statistical ensemble of velocity fields in order 
to admit the normalization condition 

f lP[u]~(u) = 1 (35) 

with rP [0] normalized according to (22) and requiring 

feA[OllP[Um(U) == (eA[uJ) = l. (36) 

The displacement-invariant infinitesimal volume ele­
ments in (34) are related by a function-space deter­
minant 

1>(0) = [det(bu/l(x')/buy(x"»]1>(u), (37) 

in which [det (buix')/buy(x"»] is defined as the 
product of all eigenvalues of the matrix kernel 

bU/l(x')/buy(x") = bllyb(x' - x") 

- 2G lIya(x' - x")ua(x"). (38) 

Since the three-index Green's function (9) vanishes 
if the time-argument is not positive, we have 

G (x' - x") = 0 for t' S t", (39) IIY'" 

and the function-space determinant of the matrix 
kernel (38) equals unity, as shown in convenient 
symbolic notation by the elementary calculation 

det (biiix')/ buy (x"» 

= det (11 - 2G • u) 

= det {exp [In (11 - 2G· u)]} 

= exp {sp [In (11 - 2G • u)]} 

= exp {sp [-2G· u - 2(G. U)2 + O«G. U)3)]} 

= 1 - sp (G • u) + 2[sp (G • U)]2 - 2 sp (G. U)2 

+ [higher order terms in sp (G· u), 

sp(G'U)2,Sp(G'U)3, ... ]=1. (40) 

In (40), "sp" denotes the function-space spur (trace) 
of a matrix kernel, obtained by contracting the indices, 
setting the space-time coordinate arguments equal, 
and integrating over the space-time region (all x and 
all t ~ 0); thus, for example, we have 

sp (G. u) == f GIIII",(O)uix) dx = 0, (41) 

and 

sp (G· U)2 == J Gllya(x' - x")u",(x") 

X G.IIP(x" - x')up(x') dx' dx" = O. (42) 

Hence, (37) reduces to an equality of the infinitesimal 
volume elements, ~(u) = ~(o), and (34) becomes 

~[uJIP[u} = P[o} = P[u - G:uu} 

= fb[O - U + G:uu}rP[o]~(o), (43) 

where b[w] is the b-functional with respect to the 
infinitesimal volume element ~(w), 

b[wJ = 0 for w = w(x) ¢ 0, (44) 

f b[w]~(w) = l. (45) 

The functional integration is over all real vector fields 
in (43), (45), and in the functional integral representa­
tion of the b-functional 

b[wJ = (const) f (exp ifV(X)' w(x) dX)~(V). (46) 

In (46) and subsequent equations, it is understood 
that ordinary space-time integrations with the infini­
tesimal volume element dx == dX1 dX2 dX3 dt are over 
all x and all t ~ O. By putting (46) into the final 
member of (43) and recalling definition (25), we 
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obtain 

IP[U] = (const) 

X e-A[U1f (exp if v(x).( -u + G: UU)(X)dX) 

x <i>[v]~(v). (47) 

It follows from (47) that the characteristic functional 
associated with IP [u], 

<I>[y] == <exp if y(x). u(x) dX) 

= f(exPifY(X).U(X)dX)IP[U]D(U), (48) 

can be expressed as 

<I>[y] = ff[exp (if ([y(x) - v(x)]. u(x) 

+ v(x)· (G:uu)(x)} dx - A[U]) ] 

x <i>[v]~(u)~(v), (49) 

where a numerical prefactor constant has been 
absorbed into the product of the displacement­
invariant infinitesimal volume elements with the 
over-all normalization of (49) fixed by (35) as 

<1>[0] = l. (50) 

Because the probability distribution IP [u] is con­
centrated on solutions to Eqs. (1) and (3), the charac­
teristic functional <I> [y] must satisfy the Hopf equation 

o<l>[y] .( a o2<1>[y] )tr 
L", 0Y!'(X) - I ax" oy,,(x)oYix) = 0 (51) 

subject to the subsidiary condition 

~ o<l>[y] = o. 
ax" oy,.{x) 

(52) 

That the functional integral representation of <I> [y] 
given by (49) satisfies Eq. (51) is verified by computa­
tion of the functional derivatives and an application 
of the functional integration by parts lemma12 ; that 
(49) satisfies (52) (or equivalently, that the charac­
teristic functional depends only on the transverse part 
of y, so that <I> [y] == <I> [ytr] for all y) is verified by 
noting the solenoidal quality of (9), 

aG!,,,p(x, t) _ 0 
ax!, -, (53) 

the property implied by (29) <i> [v] == <i> [vtr] for all v, 
and the displacement-invariance of the infinitesimal 
volume element ~(v). Since the two-point velocity 

correlation tensor 

R!'v(x', x") == (uix')uv(x"» 

== f uix')uv(x")fP [u]~(u) 

( 
o2<1>[y] ) 

= - oyix')oy.(x") y=o 
(54) 

and all other expectation values 

(F[u]) == f F[u)1P [u]~(u) = (F[ - i%y]<I> [y])y=o 

(55) 

are obtainable immediately from a closed-form 
expression for the characteristic functional (48), the 
closed-form evaluation of the functional integral 
representation (49) enables one to predict all observ­
able averages that are associated with a turbulent 
fluid velocity field. 

IV. EVALUATION OF THE CHARACTERISTIC 
FUNCTIONAL INTEGRAL REPRESENTATION 

By introducing the symmetric tensor field 

M"p(x) == f v!'(x')G!'"p(x' - x) dx' 

- ! f (av~r( x') av~r( X'») G(' ) d ' - --+-- x -x x, 
2 axp ax~ 

(56) 

the functional integral representation (49) takes the 
form 

<I>[y] = ff[exp (if{[y,,(X) - v,,(x)]u,,(x) 

+ M"p(x)uaCx)up(x)} dx - A[U]) ] 

x <i>[v]~(u)~(v). (57) 

A study of the Navier-Stokes initial value problemll 

suggests that the generic form 

A[u] = f C"p(x)u,,(x)up(x) dx - In k (58) 

is a plausible approximation for A [u] in (57), where 
C"p(x) is a real symmetric matrix field that either 
vanishes identically (in case the u-to-u correspondence 
provided by (15) is one-to-one) or is positive-definite 
for all x, and k (~ I) is a real constant prescribed by 
(36) as 

k == <exp f C"p(x)u,,(x)up(x) dX)' (59) 

With A [u] of the form (58), the functional integration 
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over u in (57) can be performed exactly to yield 

<I>[y] = k J(exp -iJ[YiX) - va(x)] 

x Q~~(x)[yp(x) - vp(x)] dx )~[V]<l>[V]~(V)' 
(60) 

in which Q;;J(x) is the inverse of the complex symmetric 
matrix 

Qa,b) == Cap(x) - iMap(x), (61) 

and the quantity 

~[v] == (IT I QaP(x) I)-i (62) 
all '" 

is defined in terms of a formal product of the deter­
minant of QaP(x) at all x, with a multiplying constant 
absorbed into ~(v). Let us now transform the integra­
tion variable in (60) from the real-valued field 
v = vex) to the complex-valued field z = z(x),where 

zix) == Q;;l(x)[vp(x) - yp(x)], (63) 

in which Q-;J(x) is a complex symmetric matrix that 
squares to the inverse of the complex symmetric 
matrix (61), 

Q;;l(x) == Qfj}(x), Q;}(x)Q-,;!(x) == Q~~(x). (64) 

We evaluate the function-space determinant 

det [bzix')/bv.(x")] = det (Q;:(X')b(X' - x") 

+ bQ;l(x') [v (x') - (X')]) (65) 
bvV(x") p Yp 

by first noting that (61) and (56) gives 

bQaix') = _ i bMap(x') = _ iG (x" - x') 
bV.(X") bvV(x") vap 

= 0 for t"::5: t'. (66) 

Thus, the algebraic relationship between Q-;J(x) and 
Qa(J(x) implies that 

oQ;:;f(x') = 0 for til < t' 
bvV(x") - , 

and therefore, by performing an elementary calcula­
tion similar to (40), we find that (65) produces 

det [ozix')/ov.(x")] = IT I Q;}(x) I = Mv]. (67) 
all '" 

Hence we have 

from which it follows that (60), expressed in terms 
of the integration variable (63), is given by 

<I>[y] = k JIK (exp - i J za(x)zix) dX) <l>[y + Qtz]~(z). 
(69) 

In (69), Qt = [Q!(J(x)] is a complex symmetric 
matrix that squares to the complex symmetric matrix 
(61), and IK is the class of all complex-valued z = z(x) 
such that Qtz = (Qtz)* is real. By combining Eqs. 
(61), (56), and (63), we obtain a quadratic integral 
equation for Qt in terms of y and z, 

Q~ix)QtrCx) == QaP(x) 

= Cap(x) - iJ[Q!v(X')z.(x') + yix')] 

X G"aP(x' - x) dx'. (70) 

Solution of (70) for Qt allows the functional integrand 
in (69) to be expressed explicitly in terms of y and z, 
and then the functional integral can be evaluated by 
exact or approximate techniques. 

A detailed study shows that the general solution 
to the integral equation (70) is unobtainable in 
closed form. Thus it is necessary to consider special 
approximate solutions for Qt, associated with 
distinct generic cases for Ca(J(x), in order to proceed 
with the final evaluation of (69). 

V. C-DOMINANT TURBULENCE 

Here we consider the most immediate special 
approximate solutions admitted by (70), namely 
those valid in cases for which the Cap(x) term is 
dominant over the integral term on the right side of 
(70) for the significant range of values of the com­
ponents of z and y in (69). Such "C-dominant 
turbulence" is characterized by the approximate 
solution to (70) 

(71) 

and the positive-definite nature of Cap(x) then implies 
that Q!p(x)"""" C!p(x) is real and can be taken to be 
positive definite. More explicitly, by expressing Cap (x) 
in terms of its real positive eigenvalues A;{X) and real 
eigenvectors Ei.,(X), 

3 

C.,p(x) = I Ai(X)Ei.,(X)EiP(X), (72) 
;=1 

we have 

! 3 ! 
Q.,P(X) "-' I (A;{X» E;aCX)EiP(X), (73) 

i=1 
I 

It follows that the class IK of z for the functional 
~(z) = [det (bzl'(X')/OV.(X"»]~(V) 

= Mv]~(v), 
integration in (69) is the function space of all real 

(68) fields z = z*. Putting the form (30) into (69), we 
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obtain 

<I>[y] '" k( exp -t II Yix')SaP(X', x") 

x Yp(X") dx' dX")I[y], (74) 

in which the functional integral that remains is 

l[y] == I[ exp ( -! II zaCx')Kap(x', X")ZP(X") dx' dx" 

-II Ya(x')SaP(X', x") 

X ctiXI)zix") dx' dX") ] ~(z) 
= (const){det [Kap(x', X")])-! 

X (exp ! II Ya(x')TaP(x', XI)Yp(X") dx' dX'} 

(75) 

We have evaluated the functional integral in (75) by 
evoking the displacement-invariance of the infinitesi­
mal volume element to reduce the integral to a 
standard form,I3 with the real symmetric kernels that 
appear in the final member defined by 

Kap(x', x") == i15ap15(x' - x") 

and 
+ C:iX')Sycl(X', xl)cJp(X") (76) 

T (x' x") = fIs (x' XIll)C! (x III)K-1 (x III XliII) ap, - ay' ycl elf' 

X C~~(X"")S~P(X"", x") dxlll dX'III. (77) 

In the latter definition the real symmetric kernel 
IQl<x', x") is the inverse of (76), defined implicitly by 
the equation 

I K;i(x', x)Kyp(x, x") dx = 15ap15(x' - x"). (78) 

The product of all eigenvalues of the symmetric 
kernel (76) appears in (75) as {det [Kap(x', x")]}, a 
quantity independent of y by virtue of the fact that 
(76) is independent of y. Hence, the substitution of 
(75) into (74) and the normalization condition (50) 
produces the result 

<I>[y] '" exp ( -! II yaCx') [Sap(X', x") - TaP(x', x")] 

X yP(X") dx' dx'} (79) 

which shows that the probability distribution is 
approximately Gaussian with the two-point velocity 
correlation tensor (54) given by 

R/lv(x', x") = S/lv(x', x") - T/lv(x', x"). (80) 

We now specialize to the simplest possible forms 
for Cap (x) and for hex) in (20) and (21), namely, 

Cap(x) = A15 .. p, (81) 

hex) = ';15 (x) , (82) 

in which A and .; are positive constant physical 
parameters. With the forms (81) and (82), we find 
that (76), (77), and (20) become 

Kap(x', x") = !15ap15(x' - x") + ASap(X', x"), (83) 

T (x' x") = AJS (x' xlll)K-1(xlll XliII) ap , ay' y6, 

X SclP(X"I
, x") dxlll dX"I

, (84) 

S (x' x") /lV , 

= .;(~ - 6 V2,)G(IX' - x"l t' + til) 
a 'a' /lV x , X/l Xv 

= (41T)-f';{[v(t' + t,,)]-i15/lv + t[v(t' + t")ri 

x [(x~ - x;)(x~ - x~) - (x; - x;)(x; - x;)15/lv]) 

x {exp [-(x; - x;)(x; - x;)/4v(t' + til)]), (85) 

where definition (11) is recalled for the second 
member in the two-point correlation tensor (85). It 
follows from (85) that 

I Sa/X', x)Syp(x, x") dx 

= e(~ - 15/lVV;,)( -V;,) 
ax~ax~ 

x J G(lx' - xl, t' + t)G(lx - x"I, t + t") dx 

= e(~ - 15/lvV;,)(-V;,) 
ax~ax~ 

x LXl G(lx' - x"l, t' + t" + 2t) dt 

= e(~ - 15 V2,)(_V)-1 
a 'a' /lV x X/l Xv 

x LXl[aG(IX' - x"l, t' + t" + 2t)/at'] dt 

= e(ax~;x~ - 15/lvV!}2v)-lG(IX' - x"l, t' + t") 
= ';(2v)-lsap(x', x"), (86) 

with use being made of the convolution equation 

f G(lx' - xl, t' + t)G(lx - x"I, t + t")d3x 

= G(lx' - X"f, t' + t" + 2t) 

and the equation (13) satisfied by (0). Because (86) 
shows that the iterated two-point correlation tensor 



                                                                                                                                    

820 GERALD ROSEN 

is simply proportional to (85), the inverse of (83) 
prescribed by (78) is 

K~(x', x") = 2t5~pt5(x' - x") 

- 4A.v(A.~ + V)-lS~p(X', x"). (87) 

Hence, (84) reduces to 

T~p(x', x") = M(M + V)-lS~P(X', x") (88) 

with the substitution of (87) and (86). We finally 
obtain the two-point velocity correlation tensor (80) 
as 

Rl'ix', x") '" v(A.~+ vr1Sl'ix', x"). (89) 

Rigorous for C-dominant turbulence with the forms 
(81) and (82), the remarkably simple result (89) 
should be compared with the general expression (AS) 
in the Appendix for the two-point velocity correlation 
tensor associated with weak turbulence. The C­
dominant turbulence features a decay law for the· 
specific kinetic energy 

a = a(t) == t(ul'(x)uix» = tRI'I'(x, x) 

= tv(M + v)-lSl'ix, x) 

= 3 . 2_1"(1TV)-t~(M + V)-lt-t, (90) 

by virtue of the contracted expression obtained from 
(89) and (85) with x' = x" = x. It is interesting to 
note that the decay law (90), a ex: t-t, is associated 
with the final period for wind-tunnel turbulence 
generated in the usual fashion by a square-mesh grid. 
Whether a two-point velocity correlation tensor with 
the form (89) and the decay law (90) are related to 
other varieties of physical turbulence for the entire 
duration of decay is a question that will be answered 
by future experimental measurements. In any event, 
the exactly solvable theory of C-dominant turbulence 
is a mathematical prototype for the evaluation of (69) 
subject to (70). 

APPENDIX: TWO-POINT VELOCITY CORRE­
LATION TENSOR FOR WEAK TURBULENCE 

The formulation given in Sec. III leads to an 
immediate expression for the two-point velocity 
correlation tensor 

RI'.(x', x") == (ul'(x')u.(x"» (AI) 

in the case of "weak turbulence," represented by a 
statistical ensemble of velocity fields with G: uu small 
compared to u for all x and all t ;;:: 0, so that only 
the leading low-order terms in the iteration solution 
series (17) are significant. Assuming that the proba­
bility distribution rP [u] is Gaussian and invariant 
under translations of space, we have a two-point 

correlation tensor of the form (20), a characteristic 
functional (30), and the expectation values 

(UI'(X')U.(X")Up(XIll» = 0, 

(UI'(x') uix") Up(XIll) U,,(X""» 

(A2) 

(A3) 

= SI'.(x', x")Sp,,(XIll
, XliII) + Sl'p(x', xlll)S.ix", XliII) 

+ S (x' X"")S (x" XIII) (A4) JlU' "P' . 

Then by putting (17) into (AI) we obtain 

Rl'ix', x") = Sl'ix', x") 

+ 2 J GI'~p(x' - y')G.yix" - y") 

X S~/y', y")SpO(y', y") dy' dy" 

+ 4J GI'~p(x' - y')Gpyo(y' - y") 

X S./x", y")Sd(Y', y") dy' dy" 

+ 4 J G.~P(X" - yl)GpyO(Y" - y') 

X SI'/x', y')S~o(Y", y') dy' dy" + 0(S3), 

(AS) 

where the space-time coordinate arguments of the 
three-index Green's function (9) are abbreviated in 
GI'~p(x) == GI'~p(x, t), and the property of the auto­
correlation tensor Sl'v(x, x) = (function of t alone) has 
been employed in order to eliminate three terms 
which vanish. The integral terms appearing in (AS) 
can ordinarily be evaluated by analytical or numerical 
procedures for specialized two-point correlation 
tensors (20) with hex) prescribed. 

• Work supported by a National Science Foundation grant. 
1 G. I. Taylor, Proc. Roy. Soc. ISlA, 421 (1935). 
2 G. K. Batchelor, Homogeneous Turbulence (Cambridge 

University, New York, 1960). 
3 S. Chandrasekhar, Proc. Roy. Soc. 229A, 1 (1955); Phys. Rev. 

102,941 (1956). 
4 H. W. Wyld, Jr., Ann. Phys. (N.Y.) 14, 143 (1961). 
S E. Hopf, J. Rat!. Mech. Anal. 1, 87 (1952). 
6 G. Rosen, Phys. Fluids 3,519,525 (1960). 
, I. Hosokawa, J. Math. Phys. 8, 221 (1967) and works cited 

therein. 
8 G. Rosen, Phys. Fluids 10, 2614 (1967) and works cited therein; 

"Dynamics of Probability Distributions over Classical Fields," 
preprint, Drexel University Physics Dept., 1970 . 

• G. Rosen, Phys. Letters 3IA, 142 (1970). 
10 For a recent introduction to field-theoretic functional integra­

tion methods see: G. Rosen, Formulations olClassical and Quantum 
Dynamical Theory (Academic, New York, 1969), Chap. 4. 

11 G. Rosen, Phys. Fluids 13, 2891 (1970). 
12 Reference 10, Appendix D. 
13 See, for example: K. O. Friedrichs, H. N. Shapiro, J. Schwartz, 

T. Seidman, and B. Wendroff, Seminar on Integration of Functionals 
(Courant Institute of Mathematical Sciences, New York University, 
1957), p. 1-19. 



                                                                                                                                    

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 12, NUMBER 5 MAY 1971 

Multiplicities in the Classical Groups. 11* 
B. GRUBER, B. H. HAN,t AND J. A. SALDANHAt 

Department of Physics, Saint Louis University, St. Louis, Missouri 63103 
(Received 16 January 1970) 

In a previous paper, a method has been developed which allows a calculation in the same manner of all 
multiplicities occurring in the theory of linear represen:tations of the classical compact Lie groups. This 
method is applied to the group SO(9) and some of its subgroups which are of interest in physics. It is 
demonstrated with the group SO(9) as example that this method of calculating the multiplicities allows 
us to accumulate in a condensed way a large amount of information and, moreover, that this method can 
be easily applied to any other (classical, compact) rank-4 group and its semisimple subgroups. 

I. INTRODUCTION 

In a previous paperl a simple method has been 
developed by means of which the multiplicities 
arising in the theory of linear (irreducible) repre­
sentations of the classical (compact) Lie groups can be 
obtained in the same manner from a given pattern 
(containing a certain number of representations). For 
each of the multiplicities-multiplicity of weights 
("inner multiplicity"), multiplicity arising in the 
decomposition of the inner direct product of two 
representations ("outer multiplicity"), and branching 
multiplicities-a different diagram is applied to the 
pattern according to essentially the same rules. 
Through the application of these diagrams to the 
pattern, the desired multiplicity is obtained. Sub­
sequently, this method for the calculation of the 
multiplicities was applied to the classical groups of 
rank 2, resulting in a complete compilation of all 
multiplicities for a limited number of representations 
of these groups. 

The present paper deals with the application of the 
results of Ref. 1 to classical groups of rank 3 and 4. 
The motivation for this program is twofold: Several 
of the rank-3 and rank-4 groups are used in physics. 
For example, Wigner's SU(4),2 the chains of groups 

SO(7) ::> G2 ::> SO(3), 

SO(2! + 1) ::> SO(3), 

SU(2! + 1) ::> SO(2! + 1), etc., 

in atomic spectroscopy,3.4 and others. Moreover, 
groups and subgroups not used at the present time 
might some day become of interest to physics. Thus, 
the knowledge of the multiplicities associated with 
these groups is certainly of interest. It is one of the 
aims of this paper to demonstrate that, whenever the 
multiplicities of a (set of) representation(s) of some 
rank-3 or rank-4 group become of interest, it presents 
no difficulty to set up patterns and diagrams by means 
of which these multiplicities can be easily obtained. 
(Strictly speaking, this is true only for representations 
with not too high dimensionality; otherwise, the 
pattern becomes unmanageable. In physics, however, 

usually only the first few representations of a group are 
used. Since representations with dimensionalities well 
in the ten thousands can still be handled with relative 
ease, it is assumed that all representations ofthe rank-3 
and rank-4 groups of interest to physics fall into the 
domain of the applicability of this method.) 

The second purpose of this paper is to demonstrate 
that a pattern (together with the diagrams) amounts 
almost to a "tabulation" of all multiplicities for a set 
of representations of a group. Even more, a pattern 
amounts as well to a "tabulation" of all multiplicities 
of all those representations of the subgroups of a 
group which are contained in the pattern. And this 
holds for all semisimple (Lie) subgroups of the group. 
Thus, a pattern together with the diagram amounts 
to an implicit compilation ("tabulation") of inner 
multiplicities, outer multiplicities, and branching 
multiplicities for all those representations of the group 
and all those representations of its (semisimple) 
subgroups which are contained in the pattern. Thus, 
any single pattern may contain data which are other­
wise widely scattered throughout the literature-if 
at all known. 

It would be unnecessary to give patterns and 
diagrams for all the rank-4 groups and their semi­
simple subgroups. Not all of these groups are of 
immediate interest. Instead the group SO(9) will be 
taken as an example. The choice of SO(9) as example 
is motivated by the fact that, on the one hand, the 
group SO(9) and some of its subgroups are of interest 
to physics, while on the other hand the group SO(9) is 
as good as any other rank-4 group to demonstrate the 
two points made above. Namely, the patterns and 
diagrams which are given for SO(9) will demonstrate 
(a) the relative ease with which the multiplicities of any 
(classical) rank-3 or rank-4 group (and its subgroups) 
can be obtained and (b) the amount of information 
contained in just a few patterns. In all, two patterns 
and four diagrams will be given. Pattern PI of Fig. 5 
and pattern P2 of Fig. 6, corresponding to the defining 
representations (for all definitions and rules refer to 
Ref. 1) D(2, 2, 0, 0) and D[t(5, 5, 1, 1)] of SO(9) 
respectively, contain the following information (the 
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patterns are deliberately kept small in order to serve 
as illustrative examples). 

(I) The weight diagrams of four representations of 
Ga, of 12 representations of SO(5), of 16 representa­
tions of SO (7), and parts of 18 representations of 
SO (9). Moreover, there are a number of representa­
tions of SO(3) contained in the pattern. Which repre­
sentations of SO(3) [or any other semisimple subgroup 
G' of SO(9)] occur in the pattern depends on which 
subgroup SO(3) (which semisimple subgroup G') is 
considered. 

The weight diagrams are not always given explicitly, 
but in the language of d.w. numbers.! Nevertheless, 
the explicit weight diagrams can be easily obtained 
from the pattern as follows from its construction 
(Ref. 1). For the particular representations included 
in the pattern, see Sec. II. 

(2) The multiplicities of weights for all these repre­
sentations of the groups Ga, SO(5), SO(7), and SO(9). 

(3) The Clebsch-Gordan series for all these repre­
sentations of the groups Ga, SO(5), and SO(7) with 
any other representation of these groups. 

(4) The branching multiplicities 

Mm-~, M~-Mrn, Mm-Mm 
SO(5) - SO(3), and G2 - SO(3) 

for the representations included in the patterns. [Here 
SO(3) is the so-called principal SO(3) subgroupS used 
in atomic spectroscopy (see Sec. III).] The branching 
multiplicity of any of these groups with respect to any 
simple or semisimple subgroup can be obtained from 
these patterns too, once the mapping onto the sub­
group and the diagram corresponding to the subgroup 
have been determined. [It might, however, for the 
branchings of the SO(9) representations, be necessary 
to enlarge or complete the SO(9) pattern. This will 
happen if a part of the pattern which is not given 
should be mapped onto weights of the subgroup which 
participate in the determination of the branching 
multiplicity. ] 

II. THE GROUP SO(9) 

In this section all information pertaining to the 
patterns and diagrams, Figs. 1-6, will be given. How­
ever, no information given in Ref. 1 will be un­
necessarily repeated. Thus, Ref. 1 is essential for an 
understanding of this paper. (All rules for obtaining 
the different multiplicities are given in Ref. 1.) The 
reader is therefore explicitly referred to Ref. 1. 

The group SO(9): Simple negative roots are 

{h = (0,0,0, -1), /3a = (0,0, -1,1), 
/3a = (0, -1,1,0), /34 = (-1,1,0,0), 

R = t(7, 5, 3,1). 

The weights are 

m = (m!, m2, ma , m4), 

mi all integers or all half-integers. 

Sets of equivalent weights: Weights which go over 
into another by a permutation of their components 
with or without a change of sign of some of their 
components belong to the same set of equivalent 
weights. Thus, the order of the Weyl group is 244! 

Dimensionality of representations: 

dim D(M) = (Ml - M2 + 1)i(Ml - Ma + 2) 

with 

X l(Ml - M4 + 3)(Ma - Ma + 1) 

X t(M2 - M4 + 2)(Ma - M4 + I) 
X i(Ml + Ma + 6)t(Ml + Ma + 5) 

X HMI + M4 + 4)HM2 + Ma + 4) 

X i(Mz + M4 + 3H:(Ms + M4 + 2) 

X t(2Ml + 7)t(2Mz + 5) 

X i(2Ms + 3)(2M4 + 1), 

Ml ~ Ma ~ Ma ~ M4 ~ ° (d.w. condition). 

Diagrams: In Fig. 1, the diagram for the multiplicity 
of weights for the groups SO(9), SO(7), SO(5), and 
SO(3) is given. It should be noted that the diagram is 
not complete but adapted to the pattern (elements 
which cannot contribute have been deleted). 

In Fig. 2, the diagram for the branching multiplicity 
SO(7) - Gz is given. The diagram for the multi­
plicity of weights for Gz is obtained from this diagram 
by deleting the element (0,0; 1) and by changing the 
sign c5. - - c5. for all other elements. [The resulting 
diagram is different from the diagram given for G2 

in Ref. 1. The reason is that the simple roots which 
arise through the mapping L of SO(7) onto G2 are 
(-1,1,0) and (l, -2, 1). Thus, the two simple roots 
are not only different from the ones used in Ref. 1 
but, moreover, one of them is a positive root. This 
latter property has the effect that now also negative 
k i values can appear. This has, however, no conse­
quences if the counting process is adapted in the 
obvious way (a negative value k; means counting 
"backward"]. 

In Fig. 3, the diagram for the Clebsch-Gordan 
series for the groups SO(7) and SO(5) is given. 

In Fig. 4, the diagram for the Clebsch-Gordan 
series for the group Gz is given. What was said about 
negative values of k i for Fig. 2 holds also for this case. 

The diagram for restrictions to the SO(3) subgroups 
is given by the two elements (j; 1) and (j + 1; -I), 
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FIG. 1. Diagram for 
the multiplicity of 
weights for SO(9), 
SO(7), SO(5), and 
SO(3). This diagram 
is to be applied to 
dominant weights only. 

Fro. 2. Diagram for 
mUltiplicity of weights 
ofG2• See text. Diagram 
for branching multi­
plicity SO(7) -+ G •. 

FIG. 3. Diagrams for 
Clebsch-Gordan series 
for the groups SO(7) 
and SO(5). 

FIG. 4. Diagram for 
Clebsch-Gordan series 
for the group G2 • Note 
the negative value for 
k •. See text. 
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where j stands for a highest weight (angular momen­
tum) of SO(3). [Here the same notation is used as in 
Ref. 1, pp. 3085 and· 3090. This notation is not to be 
confused with the similar notation (kI' ... , k4 ; bs) 

for the elements of the diagram. Here j is the angular 
momentum under consideration. The notation im­
plies that y(j) is obtained by summing up the multi­
plicities of all weights mapped onto j and j + 1, 
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respectively, and by subtracting the number obtained 
for j + 1 from the number obtained for f.1 

Patterns: For pattern PI, Fig. 5, and pattern P2 , 

Fig. 6, the following conventions are made. 

(a) The d.w. numbers refer to weights of SO(9). 
The d.w. numbers for weights of the subgroups 
SO(7), SO(5), and SO(3) are assigned through the 
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mapping L. This means that the set of weights obtained 
through subsequent mappings of an SO(9) weight 
onto some SO(7), SO(S), and SO(3) weights are 
assigned the same d.w. number as the weight of 
SO(9). (See the list of weights below.) Thus, the 
weights of the rank-2 groups will have assigned to 
them in general different d.w. numbers as the ones 
assigned to them in Ref. 1. 

(b) Weights which have been written out explicitly 
are weights of G2 • Their d.w. number, however, refers 
to weights of SO(9). [See (a) above.] These weights 
of G2 have been obtained from the SO(7) weight at 
that position in the pattern through the map.ping L of 
SO(7) onto G2. If a weight is written with normal 
brackets, it is a dominant G2 weight; if it is written 
with square brackets, then it is a nondominant G2 

weight. Moreover, the G2 weight (0, 0) has been added 
to other blocks in order to serve as point of reference 
for application of the G2 diagrams. 

(c) The highest weight of a set of equivalent weights 
(the members of which have assigned to them the 
same d.w. number) is indicated for SO(9) by an 
underlined numeral with a vertical line to its right, 
for SO(7) by an underlined numeral, and for SO(S) 
by a numeral underlined by a curved line. The highest 
weight of the set of weights characterized by the d.w. 
number I is the highest weight of this set for all three 
groups SO(9), SO(7), and SO(5).6 [For SO(3), the 
highest weight of a set of equivalent weights is not 
indicated. The highest weights are given, in natural 
sequence, by the weights of the line containing 1, 
when moving from 1 to the right.] 

(d) All weights when written out explicitly (if not 
solely represented by their d. w. number) have brackets, 
apart from the SO(3) weights which are plotted "out­
side" the pattern (i.e., below and on the side of a 
block, separated from it by a line). Thus, if in the 
pattern a number appears without brackets, then it is 
a d. w. number. On the other hand, if a weight appears 
without a d.w. number, then it does not belong to the 
SO(9) pattern (including subgroup pattern). 

(e) The mappings L of SO(9), SO(7), SO(5), and 

TABLE I. 

SO(9) SO(7) SO(5) SO(3) G. 
.,(2,2,0,0)'0 12(2, 2, 0)10 .(2,2)'0 .(2,2) 
•• (2, 1, 1,0). 14(2, 1, 1) • • (3,0) 
,.(2, 1, 0, 0), 12(2, 1,0), .(2, 1), .(1, 1) 
• (2,0,0,0). • (2,0,0) • • (2, 0) • (2) • 1(0,0) 

16(1,1,1, O. 
•• (1, 1, I, 0). .(1, I, 1), 
•• (1, 1,0,0). 12(1,1,0) • .(1, 1). 
• (0,0,0,0)' • (1,0,0) • .(1,0) • (1). 
,(1,0,0,0), ,(0,0,0)1 ,(0,0), (0), 

TABLE II. 

SO (9) SOC?) SO(5) SO(3) 
.,(5, 5, 1, 1)10 24(5, 5, 1)'0 ,(5, 5)'0 

18.(5, 3, 3, I). ..(5,3,3). 
192(5, 3, 1, 1), ,.(5, 3, 1)7 .(5, 3)7 
• ,(5,1,1,1). 24(5, 1, 1) • .(5, 1). (5). 
16(3,3,3,3). 
,,(3, 3, 3, 1), .(3, 3; 3). 
•• (3,3,1,1)3 .,(3,3,lh ,(3, 3)3 
64(3,1,1,1). ..(3, 1, 1)2 .(3, 1). (3). 
,,(l,I,I,lh .(1, I, 1), ,(1, 1)1 (I), 

G2 onto SO(3)2 are indicated by straight lines. All 
weights along a straight line are mapped onto the same 
weight of the subgroup SO(3)2' 

With these conventions, the d.w. numbers of the 
entire pattern describe (pieces of) representations of 
SO(9), the d.w. numbers of the block column con­
taining 1 describe representations of SO(7), the d.w. 
numbers of the block containing 1 describe representa­
tions of SO(5), the d.w. numbers of the line con­
taining 1 describe representations of SO(3), and, 
finally, the weight vectors of the block containing 1 
describe representations of G2 • The only other 
elements of the pattern are vectors (0, 0) (without 
d.w. numbers) which serve as point of reference for 
the G2 diagrams. 

It should be pointed out that the blocks to the left of 
the "block column" containing 1 are needed for the 
calculation of the branching multiplicity with respect 
to the restriction to SO(3)2 subgroup only. Their 
relative position to the rest of the pattern is therefore 
irrelevant. 

The Groups and Their Representations 

The representations of the groups SO(9), SO(7), 
SO(5), SO(3), and G2 contained in pattern PI are 
listed in Table I. 

The representations contained in pattern P2 (the 
weights given have to be divided by 2) are listed in 
Table II. 

The representations D(j) of the principal SO(3) 
subgroup [SO(3)21 contained in patterns P l and Pz 
are given for the values j = 0, 1, ... ,14, and 
j = 0, 1, ... , 19, respectively. 

III. SUBGROUPS 

The mappings L and simple root systems are given 
below . 

Branchingsfor patterns P: 

SO(7) -->- G2:Lm = (m2 + m" m3 - m" -m2 - ma) 

= (m2 - m3 + 2m" m2 + 2m3 - m,) 

in (p, q) notation, 

fJ = (-1, 1,0), ex = (1, -2, 1). 
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The (p, q) notation has been used in the pattern: 

G2 -+ SO(3)2:L(P, q) = t(4p + 5q) 

SO(9) -+ SO(3)2:L(ml, m2, m3, m4 ) 

= 4ml + 3m2 + 2m3 + m4 , 

SO(7) -+ SO(3)2: L(m2, m3, m4) = 3m2 + 2m3 + m4' 

SO(5) -+ SO(3)2:L(m3' m4 ) = 2m3 + m4, 

fJ = -1 in all the three cases. 

IV. RULES 

Some minor adaptions of the rules given for 
obtaining the various multiplicities, in Ref. 1, have to 
be made. 

(A) Multiplicity of Weights: To each group 
considered there corresponds a particular part of the 
pattern P, as noted before in Sec. II. For insta?ce, the 
representations of the group SO(5) are gIVen by 
the block containing the d.w. number 1. It can then be 
noted that, due to the way in which the d.w. numbe~s 
have been assigned to the weights of the subgroups, In 
general not all numbers p, p - 1, ... ,1 are d.w. 
numbers of the representation labeled by p. Some of 
the numbers of such a sequence may not appear at all. 
This is, however, of no concern. The modified rule is 
that all weights characterized by d.w. numbers smaller 
than p (and greater than zero) belong to the representa­
tion p, whenever such a number appears. If a number 
does not appear, then there exists no weight of the 
group which is characterized by this number. 

For reasons of convenience, that part of the 
pattern which contributes to the multiplicity of weights 
has been indicated by dashed lines and lies below and 
to the right of these lines. These areas correspond to 
the blocks referred to in the "counting process" (see 
Ref. 1, Sec. IlIA) and take over their role in the 
determination of the multiplicity y. 

(B) Multiplicity in the direct product D(M) @ 

D(M'): What was said in Sec. IVA for the d.w. 
numbers holds obviously also in this case. Once a 
group has been chosen [SO(7), SO(5), G2] and the 
part of the pattern P corresponding to it has been 
identified, the d.w. numbers of a representation D(M) 
characterized by the d. w. number p are given by those 
d.w. numbers p', 1 ~ p' ~ p, which occur in that part 
of the pattern. 

For groups whose pattern consists of d.w. number.s, 
as it is the case for the groups SO(7) and SO(5) In 
pattern P, it becomes essential to determine the 

argument M' + m of y(M' + m). The d .. w. numbers, 
namely, do not distinguish among the weIghts of a set 
of equivalent weights. 

As for the case in which the elements of the pattern 
are the weights themselves, in this case the multi­
plicity reM' + m), mE D(M),. of the dire~t product 
D(M) @ D(M') is also determIned succeSSIvely. !f p 
is the d.w. number which corresponds to the weIght 
M, the multiplicities are calculated successivel~ 

beginning with p [for which the result is the multI­
plicity reM' + M) = 1]. The succession in which the 
multiplicities 

y(M' + m) = y(M' + M + kd3l + ... + kiJ4), 

mE D(M), 
are calculated is in the order 

kl = 0, 1, 2, .. " k2 = k3 = k4 = 0, 

followed by 

kl = 0, 1, 2, ... , k2 = 1, ka = k4 = 0, 

and so on, exhausting all weights of the representation 
D(M) [and only weights of D(M)]. This implies that 
when the diagram is applied to some element of the 
pattern belonging to D(M) from which p is reached 
by the counting process (kl' k2' ka, k 4), then the 
argument M' + m for the multiplicity y is for that 
element given by M' + M + k1fJl + ... + k4fJ4' 

(C) Branching Multiplicity: For a branching of a 
representation resulting from the restriction G -+ G' , 
that part of the pattern is relevant which corresponds 
to representations of G. Inside that part of the pattern 
the mapping L of weights of G onto weights of G' is 
considered. The dominant weights arising through that 
mapping are given by weight vectors in regular brackets 
(inside the pattern) and by the numbers j (highest 
weights) for the SO(3) subgroups (without brackets, 
plotted "outside" the pattern). 

The first layer of SO(3) weights corresponds to the 
restriction SO(9) -+ SO(3), the second to SO(7)-+ 
SO(3), and the third layer to SO(5) -+ SO(3). 
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Classical neutrino fields in curved space-time are studied subject to the condition that the neutrino 
energy tensor Tab satisfies Tabu·Ub "" 0 for all timelike vectors U·. It is shown that the principal nuIl con­
gruence of these neutrino fields is geodesic and that its shear and twist are restricted. In addition, there 
exists a canonical null tetrad with respect to which Tab assumes a simple form. These conditions, in fact, 
characterize this class of neutrino fields. In addition, it is shown that if Tab satisfies the stronger condition 
that T.bUb be a timelike or null vector for all timelike vectors u', then the principal null congruence is 
also shear-free. Comparisons are made with the well-known properties of the electromagnetic energy 
tensor. 

1. INTRODUCTION 

In the 2-spinor formalism, a classical neutrino 
field in curved space-time is described by a 2-spinor 
field CPA (xa) which satisfies l 

AA'-I. rf' 'l'A;a = o. (Ll) 

The quantities (JaAA' determine the metric tensor 
according t02 

rf'AA'(JbBB~ABEA'B' = gab, (1.2) 

and the covariant derivative cP A;a is defined in terms 
of the usual spinor connection coefficients.3 

At each event a neutrino field CPA (xa) defines a 
direction tangent to the null cone, given (up to a 
scale factor) by 

r = (JaAA'CPACPA' , (1.3) 

called the principal null direction (p.n.d.) of the field 
at that event, in the terminology of Penrose.4 The 
congruence of null curves to which the vector field r 
is tangent is called the principal null congruence (p.n.c.) 
of the field. We are going to show that there is a close 
relationship between the geometric properties of this 
congruence and certain physically relevant restrictions 
on the energy tensor of the neutrino field, which is 
defined (with suitable units) by5 

. A-I.A' -I.A -I.A') 
Tab = 1[(JaAA.(CP 'I' ;b - 'I' ;b'l' 

-I.A-I.A' -I.A -I.A' (4) + (JbAA.( 'I' 'I' ;a - 'I' ;a'l' )]. 1. 

As motivation for the particular restrictions which 
we are going to consider in connection with the 
neutrino energy tensor, we briefly mention some 
aspects of the physical interpretation of energy 
tensors in general. First, the energy density of a field6 

at any event P with respect to an observer whose 
world line contains P is defined by7 

(1.5) 

observer (at P). In addition, the vector 

Qa(u) = Tabub (1.6) 

describes the flow of energy in the field with respect to 
this observer, in the following sense. Let dS2 be a 
small 2-surface carried along by the observer, with 
unit normal na in the observer's instantaneous rest 
space (so that uana = 0). Then the energy flux across 
dS2 per unit time per unit area is given by 7.8 

Qa(u) na. 

In terms of these concepts we define the following. 

Definition: A field is said to satisfy the strong energy 
condition if its energy tensor Tab satisfies the conditions9 

E(u) > 0 (1.7) 
and 

Qa(u) is a future-pointing timelike or null vector, 

(1.8) 

for all observers at each event P for which Tab ::;1= O. 

For example, a distribution of perfect fluid, with 

Tab = (A + p)VaVb - pgab, 

where A, p, and Va are the rest energy density, the 
pressure, and velocity of the fluid, respectively, 
satisfies the strong energy condition, provided that 
A2 - p2 ~ 0, as is easily shown. Secondly, the 
electromagnetic energy tensor is given by 

Tab = FacFbc - tgabFcdFcd, (1.9) 

in terms of the electromagnetic field tensor Fab , and 
satisfies the conditionslO 

E(u) ~ k, 

where ua is the (unit) future-pointing velocity of the 

828 

(1.10) 

(1.11) 
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where 
k = H(FabFab)2 + (FabF*ab)2]l ~ O. (1.12) 

Equality in (1.10) can be achieved for some observer 
if and only if k ¢ O. Since (1.8) is a consequence of 
(1.11), the strong energy condition is again satisfied. 

For the classical neutrino field, however, it is welI 
known that the condition (1.7) can be violated by 
even the simplest of solutions of (1.1), as we briefly 
illustrate injiat space-time. For the neutrino field 

(1.13) 

in terms of preferred coordinates with 1jJA a constant 
2-spinor and 

the energy tensor (1.4) assumes the form 

Tab = 4€PaPb => E(u) = 4€{Paua)2. 

Thus the strong energy condition is not valid for the 
field (1.13) with € = - L 

We thus weaken the requirements (1.7) and (1.8) 
in the following definitions. 

Definition: A field is said to satisfy the weak energy 
condition E1 if its energy tensor satisfies 

E(u) ¥: 0 (1.l4) 

for all observers at each event P for which Tab ¢ O. 

Definition: A field is said to satisfy the weak energy 
condition E2 if its energy tensor satisfiesll 

Qa(u) is a timelike or null vector (1.15) 

for all observers at each event P for which Tab ¥: O. 

Note that (1.15) implies (1.14). For the sake of 
brevity these fields will be referred to as fields of class 
E1 and E2, respectively. 

We are going to show that the generic neutrino 
field does not satisfy E1 (and hence E2). In fact, if the 
p.n.c. of the field is nongeodesic, the condition E1 is 
nonvalid. Furthermore, if the p.n.c. of a neutrino field 
of class E1 has nonzero shear, then E2 is nonvalid. 

In Sec. 2 the Newman-Penrose formalism12 is used 
to write the neutrino energy tensor in a form which 
explicitly displays its relationship to the p.n.c. of the 
field. The main results concerning the energy condi­
tions are stated in Sec. 3, and comparisons are made 
with the electromagnetic field. The theorems of Sec. 3 
are proved in Sec. 4, and in Sec. 5 the properties of the 
minimal polynomial of the neutrino energy tensor 
are briefly described for fields of class E1 . 

2. NEUTRINO ENERGY TENSOR IN 
NEWMAN-PENROSE FORM 

Let oA and ,A be a pair of spinor fields on space­
time normalized so that 

(2.1) 

The set {oA, ,A} is called a dyad12 or spin frame. We 
adapt the dyad to the neutrino field by requiring that 
oA be parallel to the neutrino field spinor rpA, i.e., 

(2.2) 

where rp is a complex function. The remaining freedom 
in the choice of dyad is described bt3 

oA' = Rlel,soA, 

tA'.= e-liSR-l{tA - RToA), (2.3) 

where R > 0 and S are arbitrary real functions and T 
is complex. 

The dyad gives rise, in the usual manner,12 to a 
null tetrad {ka, na, rna, rna}, with 

The null vector field k a is thus tangent to the p.n.c. of 
the neutrino field. The normalization (2.1) implies 

all other contractions being zero. The freedom in the 
choice of tetrad corresponding to (2.3) is13 

k a' = Rka, 

na' = R-1na - Tma - Trna + RTTka, (2.5) 
rna> = eiS(ma - RTka). 

The Newman-Penrose spin coefficients12 are defined 
according to 

A A' Bn 
K = 0 0 0 v AA'OB , 

AA' B 
(J = 0 , 0 V'AA,OB' 

P = ,AOA'oBV' AA,oB' 
AA' B 

T =, t 0 V' AA,oB' 
€ = oAOA',BV' AA,oB' 

AA'B fJ = 0 , , V'AA,OB' 

where 

AA'Bn V =, , t v AA'lB , 
A A'B .A. = tOt V'AA,tB' 

flo = OAtA',BV' AA,tB, 

1T = oAOA',BV' AA,tB, 

Y = ,A,A'oBV' AA"B , 

IX. = tAOA'oBV' AA"B' 

(2.6) 

The spin coefficients K, (J, and p describe certain 
geometric properties of the congruence k a (which by 
construction is the p.n.c. of the neutrino field). In 
fact, this congruence is geodesic12 if and only if K = O. 
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Furthermore, if K = 0, then a is the complex shear 
while p - p and p + P describe respectively the 
twist and expansion of this congruence.14 

The neutrino field equations (Ll) are equivalent to 
a set of two equations involving the function e/> 
[defined by (2.2)], the spin coefficients, and the 
Newman-Penrose differential operators12 

b..l.. = rna ae/> 
'I' axa ' 

(2.7) 

A straightforward calculation yields 

De/> = (p - € )e/>, be/> = (T - {J)e/>. (2.8) 

These are the neutrino field equations (1.1) in 
Newman-Penrose form when the spinor dyad is 
adapted to the neutrino field according to (2.2). 

By means of a similar calculation, one can expand 
the energy tensor (1.4) in terms of the null tetrad 
vectors. After using the field eq uations (2.8) to eliminate 
De/> and be/>, one obtains15 

Tab = Akakb + B(4k(anb) - gab) + Cmamb + Cmamb 

where 

+ 2Dn(amb) + 2Dn(amb) + 2Ek(amb) 

+ 2Ek(amb) , (2.9) 

A = 2i[e/>!l.f> - f>!l.e/> - e/>f>(y - y)], (2.10) 

B = -ie/>f>(p - p), C = 2ie/>f>a, (2.11) 

D = -ie/>f>;<, E = if>(iSe/> + (Xe/> - 27'e/». 

(2.12) 

From the remarks foIl owing Eqs. (2.6), it is clear 
that the form of Tab depends strongly on the proper­
ties of the p.n.c. In fact, the p.n.c. of the neutrino field 
is geodesic if and only if the energy tensor satisfies 
Tabkamb = O. In addition, if the p.n.c. is geodesic, it is 
shear-free if and only if Tabmamb = 0 and twist-Jree if 
and only if Tabk"nb = O. The property 

(2.13) 

ensures that these conditions are invariant under the 
tetrad freedom (2.5), as is easily verified. 

3. THE ENERGY CONDITIONS 

In this section we characterize those neutrino 
fields which satisfy the various energy conditions of 
Sec. 1. The proofs of the theorems are based on the 
expression (2.9) for the energy tensor, but involve 
only elementary algebra. Since they are somewhat 

tedious, they are postponed until Sec. 4 in order not 
to interrupt the discussion. 

The first theorem shows that the existence of curva­
ture in the p.n.c. of a neutrino field prohibits the 
validity of the condition E1 . 

Theorem 3.1: The p.n.c. of any neutrino field of 
class El is geodesic and its shear a and twist w == 
ti(p - p) are restricted by 

aa - 4w2 ~ O. 

We next assert the existence of a canonical null 
tetrad for this class of neutrino fields. 

Theorem 3.2: For any neutrino field of class El 
there exists a nun tetrad {ka, na, rna, ma} with ka 

tangent to the p.n.c., such that 

Ta~amb = 0, (Tabnanb)(TcdnCkd) ~ O. 

The canonical tetrad is determined uniquely [up to 
scale and phase factors Rand Sin Eq. (2.5)] provided 
that 

aa - 4w2 ::;I:. O. 

The conditions of the preceding theorems, in fact, 
characterize the neutrino fields of class El . 

Theorem 3.3: A neutrino field is of class El if and 
only if there exists a null tetrad with respect to which 
its energy tensor assumes the form 

Tab = Akakb - 2e/>f>w( -gab + 4k(anb» 

+2ie/>f>(iimamb - amamb), (3.1) 
with 

aii - 4w2 ~ 0, Aw ~ 0, (3.2) 

where A is given by (2.10). 

Further insight into the role of the twist wand the 
quantity A is provided by the following. 

Theorem 3.4: For neutrino fields of class El the 
energy density E(u) satisfies 

sgn E(u) = -sgn w, 

provided that w ::;I:. 0, and 

IE(u) I ~ 2e/>f> Iwl· 

(3.3) 

(3.4) 

The lower bound is attained by an observer if and 
only if his velocity is a (timeIike) eigenvector of the 
energy tensor.16 Such observers exist if and only if 
A = 0 with respect to a canonical tetrad. 
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Corollary: If the p.n.c. of a neutrino field of class 
El is twist-free (=> (f = 0, A ~ 0), then 

sgn E(u) = sgn A, (3.5) 

and there exist observers for whom IE(u)1 is arbitrarily 
small. 

Comparison of Eqs. (3.4) and (1.10) suggests that 
the quantity 2cp~ Iwl is the analog for neutrino fields of 
class El of the quantity k, defined by (1.12), for electro­
magnetic fields. We thus conclude that as far as energy 
considerations are concerned only· those neutrino 
fields of class El whose p.n.c. is twistjree (and hence 
shearjree) are the analog of the null electromagnetic 
fields1? (which are characterized by k = 0). In this 
case the energy tensor (3.1) reduces to18 

Tab = Akakb' 

The energy tensor of a null electromagnetic field is of 
precisely this form,19 with ka being tangent to the 
repeated p.n.c. of the field and A being a positive 
function. From a geometrical point of view, however, 
the analogy is not complete, since for a null electro­
magnetic field the repeated p.n.c. will not necessarily 
have simple geometric properties. However, for a 
sourcejree field, the repeated p.n.c. is geodesic and 
shear-free,20 and for the simplest such solutions in flat 
space-time, namely the plane-fronted21 and spherica}22 
electromagnetic waves, it is also twist-free. 

We now characterize the neutrino fields of class E2 . 

Theorem 3.5: A neutrino field is of class E2 if and 
only if there exists a null tetrad with respect to which 
its energy tensor assumes the form 

Tab = Akakb - 2cp;Pw( -gab + 4k(anb)' (3.6) 
with 

[as defined by Eq. (1.6)] is tangent to their world 
lines, so that they measure zero flow of energy in the 
field. In contrast to this, Theorem 3.4 asserts that 
for the generic neutrino field of class E1 (for which 
A ~ 0) all observers measure a nonzero flow of energy 
in the field. The same holds for the generic neutrino 
field of class E2. 

4. PROOFS OF THEOREMS 

Proof of Theorem 3.1 

We assume, with El satisfied, that the p.n.c. of the 
neutrino field is nongeodesic and satisfies Clii - 4w2 > ° (in some region of space-time), and prove that the 
equation 

(4.1) 

subject to uaua = 1 and Tab ~ 0, has a nontrivial 
solution for ua (in that region). The theorem then 
follows by contradiction. The detailed proof falls 
naturally into two parts. 

Part 1: Assume, with El satisfied, that the p.n.c. 
of the neutrino field is nongeodesic in some region, 
which implies D ~ ° by Eq. (2.12). The tetrad 
freedom (2.5) can now be used to transform 

C = 0, D = L (4.2) 

An arbitrary timelike unit vector field ua can be ex­
pressed in terms of a null tetrad as 

ua = pka + qna + s(i6ma + e-i8ma
), (4.3) 

where p, q ~ 0, s > 0, and 0 are real functions which 
satisfy 

2pq - 2S2 = 1. (4.4) 

By means of Eqs. (2.9), and (4.2)-(4.4), Eq. (4.1) can 
be written as 

Aw ~ 0. (3.7) Aq3 - 4q2s lEI cos (tp - 0) + qB(1 + 4s2) 

As an immediate consequence of this theorem and 
Eqs. (3.3) and (3.5), we have the following. 

Corollary: A neutrino field satisfies the strong 
energy condition if and only if there exists a null 
tetrad with respect to which its energy tensor assumes 
the form (3.6) with 

A ~ 0, w ~ 0, 

but not both zero. 

One additional consequence of Theorem 3.4 is of 
interest. For the generic electromagnetic field (k ~ 0), 
it is well known that the energy tensor admits a time­
like eigenvector.16 Equivalently, this means that there 
exist observers for whom the energy flow vector Qa(u) 

where E = lEI ei'IJ. 

- 2s(l + 2s2) cos 0 = 0, (4.5) 

If A ~ 0, we choose s ~ 0 and cos 0 = 1. Then 
(4.5) is a cubic in q with nonzero constant term and 
hence has at least one real nonzero solution for q. 

If A = ° but E ¥= 0, choose 0 such that 

cos (tp - 0) ~ 0. 

Then (4.5) is a quadratic in q with discriminant 

B2(1 + 4S2)2 - 32s2(1 + 2S2) lEI cos (1p - 0) cos 0, 

which can be made nonnegative by choosing s suffi­
ciently small. (Choose s = 0, q arbitrary if B = 0.) 

If A = E = 0 but B ~ 0, choose S ~ 0 and 
cos () ~ O. Then (4.5) yields a unique nonzero 
solution for q. 
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Thus in all cases we have constructed a nontrivial or 
solution ua of (4.1) as required. (b) B = C = 0. (4.10) 

Part 2: Assume that the p.n.c. is geodesic but 
satisfies (fjj - 4w2 > 0, which by Eqs. (2.11) and 
(2.12) implies 

D = 0, cC - 4B2 > ° => C ¢' 0. (4.6) 

By choosing 

R = I, S = 0, T= (2BE - CE)/(CC - 4B2) 

in the tetrad transformation (2.5), we achieve 

E= 0. (4.7) 

By means of Eqs. (4.3), (4.4), (4.6), and (4.7), Eq. 
(4. I) yields 

Aq2 + B(1 + 4S2) + 21CI S2 cos (20 - 1p) = 0, (4.8) 

where we have written C = ICI ei
",. 

If AB < 0, then s = 0, and q = (-BfA)! is a 
solution of (4.8). If AB 2 ° and A ¢' 0, we choose 
s¢'O and cos (2() - 1p) = -sgn B. Then 

q2 = [2s2(1C1 - 21BI) - IBI]/IAI. 

By virtue of (4.6), we can ensure that there is a real 
solution for q by choosing s sufficiently large. 

If A = ° and B ¢' 0, we choose cos (2() - tp) = 
-sgn B. Then, q arbitrary, s = [IBI/20Cl - 2IB/)]! 
is a solution. (Choose s = 0, q arbitrary if B = 0.) 

Thus in each case we have constructed a nontrivial 
solution ua of (4.1) as required, and the proof is 
complete. 

Proof of Theorem 3.2 

Part 1: Proof by contradiction. Assume, with El 
satisfied, that Tabnamb ¢' 0, i.e., 

E ¢' 0, (4.9) 

for all null tetrads with k a tangent to the p.n.c. This 
means that E¢'O is preserved under the tetrad 
transformation (2.5) with R = 1, S = 0, and T 
arbitrary. Under such a transformation, 

E* = E + TC + 2TB. 

Thus E* = ° => EC - 2BE = T(4B2 - CC). Clearly, 
we must have 4B2 - cC = 0; otherwise, there exists 
a unique solution for T. On the other hand, if 
4B2 - cC = ° and EC - 2BE = 0, it is easily seen 
that there exists a (nonunique) solution for T, unless 
B = C = 0. 

The assumption (4.9) thus implies23 

(a) 4B2 - CC = 0, EC - 2BE ¢' 0, 

Case (a): Under a transformation (2.5) with R = 1 
and S = 0, the quantity 2AB - EE transforms, 
since 4B2 - cC = ° = D, according to 

(2AB - EE)* = 2AB - EE 

+ T(2BE - EC) + T(2BE - EC). 

Thus one may use (2.5) to achieve 2AB - EE = 0. 
The remaining freedom in (2.5) enables us to transform 
E = 1. We thus have the conditions 

D = 0, E = 1, 4B2 - cC = 0, 

2AB = I, C - 2B ¢' 0. (4.11) 

With ua given by (4.3), Eq. (4.1) assumes the form 

Aq2 - 4qs cos 0 

+ € IBI {I + 4s2[1 + € cos (tp - 20)]} = 0, 

where we have written C = ICI ei
"', B = € IBI, and 

€ = ± l. Since A ¢' 0, this is a quadratic in q, with 
discriminant 

(4.12) 
where 

x = cos 20 - € cos (tp - 20). 

If E = 1, we choose 20 = 7T + 'tjJ => X = 1 -
cos 1p 2 0. But X = ° ¢:> cos tp = I => C = 2B, which 
contradicts (4. I 1). Thus X > ° for all permissible tp. 

Similarly, if € = - I, we choose 20 = 'tjJ => X = 1 + 
cos 1p, which is positive for all permissible tp. Thus 
since X > 0 in all cases, we can ensure d 2 0 in (5.12) 
by choosing s sufficiently large, and a solution for q 
exists. 

Case (b): Here Eq. (4.1) reduces to 

Aq2 - 4qs cos 0 = 0, 

after we transform E = I. With appropriate choices 
for sand 0 (depending on whether A = ° or A ¢' 0), 
this equation admits a nonzero solution for q. 

Thus the assumption (4.9) contradicts E1 • 

Part 2: Proof by contradiction. Assume, with El 
satisfied, that there exists a null tetrad with Tabnamb = ° but (Tabnanb)(TcdnCkd) < 0. We thus have the 
conditions 

D = E = 0, AB < 0. 

It is sufficient to consider vectors ua of the form (4.3 
with s = 0. Equation (4.1) then reduces to 

Aq2 + B = 0, 
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which clearly has a real nonzero solution for q, 
contradicting El . 

The proof is thus complete. 

Proof of Theorem 3.3 

That El implies the form (3.1), (3.2) for Tab is a 
consequence of Theorems 3.1 and 3.2. We prove the 
converse. 

For the energy tensor given by (3.1) and (3.2), 
Eqs. (2.11), (4.3), and (4.4) enable us to write 

ETabuaUb = IAI q2 + IBI 
+ 2s2[21BI + E ICi cos (2f) - 1p)], (4.13) 

where C = Cei'P, A = E IAI, B = E IBI, and E = ±1. 
The condition (j(j - 4w2 ~ ° (which is equivalent to 
4B2 - CC 2 0) implies IBI 2 liCi. We thus obtain 

ETabUaub 2 IAI q2 + IBI 2 IBI 20, (4.14) 

for all ua. The right-hand side of (4.13) is a sum of 
three nonnegative terms, and q is nonzero. This 
means that ETabUaUb can vanish only if Tab = 0. Thus 
E1 is satisfied, and the proof is complete.' 

Proof of Theorem 3.4 

It is an immediate consequence of (4.13) and (2.11) 
that 

sgn E(u) = E = sgn B = -sgn w, 

as required. In addition, (4.14) asserts that 

IE(u)1 2 IBI == 2¢;¢ Iwl. 

Furthermore, for Tab of the form (3.1), the equa­
tions TabUb = XUa , with u a given by (4.3) and (4.4), 
are equivalent to 

B - X = 0, A = 0, 

s[2B + ICi cos (2f) - 1p)] = 0, s sin (2f) - 1p) = 0, 

(4.15) 

since p, q ;i: 0. Thus Tab admits a timelike eigenvector 
if and only if A = 0. Furthermore, if ETabUaub = IBI, 
it follows from (4.13) that 

IAI q2 = ° = 2s2[21BI + E ICi cos (2f) - 1p)], 

since both terms are nonnegative. If s = 0, Eq. (4.15) 
implies that ua is an eigenvector. If s ;i: 0, we obtain 

4B2 - 1C/ 2 = -1C/ 2 sin2 (20 - 1p). 

Since 4B2 - ICJ2 2 0, we conclude that sin (2f) - 1p) = 
0, so that ua is again an eigenvector of Tab' 

Conversely, if ua is a timelike eigenvector of Tab, it 
follows immediately from (4.13) and (4.15) that 
ETabuaub = IBI, and the proof is complete. 

Proof of Theorem 3.5 

Assume that E2 , and hence E1, are satisfied. Thus 
by Theorem 3.3, Tab can be expressed in the form (3.1), 
with the conditions (3.2). A straightforward calcula­
tion using (4.3) and (4.4) yields 

Qa(u)QaCu) 

= 2ABq2 + B2 - 21Ci s2(ICi + 2B cos 2f), 

where we have used (2.5) to transform C = C. 
Assume that the p.n.c. has nonzero shear, i.e., 
C ;i: 0. Choose cos 2f) = 0. Then, for any ua with s 
sufficiently large, we will have Qa(u)Qa(u) < 0, so that 
E2 is violated. Thus E2 implies that the p.n.c. has 
zero shear, and Tab assumes the form (3.6), with (3.7). 

Conversely, with Tab of the form (3.6), (3.7), we 
obtain 

Qa(u)Qa(u) = 2ABq2 + B2 2 0, 

so that E2 is satisfied. This completes the proof. 

5. MINIMAL POLYNOMIAL OF THE 
ENERGY TENSOR 

In this section we compare the neutrino and 
electromagnetic energy tensors from a different and 
purely algebraic point of view. As was mentioned in 
the introduction, null electromagnetic fields can be 
characterized by the vanishing of the scalar k defined 
by Eq. (1.12). One can also differentiate between null 
and nonnull electromagnetic fields by considering the 
minimal polynomiaP4 of the energy tensor Tab 

regarded as a 4 X 4 matrix. From Eq. (1.11) one ob­
tains for nonnull fields the polynomial 

m(x) = (x - k)(x + k), k;i: 0, 

which has dist.inct roots. For null fields, on the other 
hand, this polynomial reduces to 

m(x) = X2, 

which has repeated roots. 
As regards neutrino fields of class El [with energy 

tensor (3.1)], the situation is more complicated. In 
fact, for the most general such field, the minimal 
polynomial m(x) attains its maximum degree, namely 
4. The various possibilities for m(x) are distinguished 
by the vanishing or nonvanishing of the quantities 
A, ~ == 4w2 - (fa, and (f, all of which have signifi­
cance in connection with the theorems of Sec. 3. The 
different polynomials, which are arrived at by a 
straightforward calculation based on Eq. (3.1), are 
listed in Table I. Note that by Theorem 3.4 the 
energy tensor (3.1) admits a timelike eigenvector if 
and only if the minimal polynomial m(x) has no 
repeated factors. 
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TABLE 1. The minimal polynomial m(x) of the neutrino energy 
tensor for fields of class E1 • The quantities A, B, and e are 
defined by Eqs. (2.10) and (2.11), while b. == 4w' - tJG depends 

on the twist wand shear tJ of the p.n.c. 

A b. tJ m(x) 

~O 0 0 x2 

0 ~O 0 (x - B)(x + B) 
~O ~O 0 (x - B)2(X + B) 

0 0 ~O (x - B)(x + 3B) 
~O 0 ~O (x - B)2(X + 3B) 

0 ~O ~O (x - B)[(x + B)2 - eel 
~o ;CO ;CO (x - B)2[(X + B)2 - eel 

6. CONCLUSION 

In flat space-time one is interested not so much in 
the (local) energy tensor of a field as in the total 
energy and momentum which is obtained by inte­
grating certain components of the energy tensor over 
spacelike hypersurfaces.25 In curved space-time, 
however, it is essential that the (local) energy tensor 
of a field be meaningful since it acts as a source of the 
gravitational field and directly affects the curvature 
of space-time through the Einstein field equations 
and the Bianchi identities. It is in this connection 
that the energy conditions studied in this paper are 
perhaps of most relevance. 

We thus conclude with some remarks on gravita­
tional fields which have a neutrino or electromagnetic 
field as source. First, if the neutrino or electromagnetic 
field admits a geodesic and shear-free p.n.c. (and no 
other sources are present), then it is a straightforward 
consequence of the generalized Goldberg-Sachs 
theorem26 that this preferred null congruence is a 
repeated p.n.c. of the Weyl tensor, so that the gravita­
tional field is algebraically special. 27 Despite this 
analogy, one would suspect, however, that, in gen­
eral,28 the gravitational fields which have a neutrino 
field as source differ considerably from those which 
have an electromagnetic field as source. The reasons 
for this are the prominent role played by the twist of 
the p.n.c. for neutrino fields of class El , in comparison 
with the case of the electromagnetic field (see Sec. 3), 
and the greater algebraic complexity of the neutrino 
energy tensor (see Sec. 5). In addition, this conjecture 
is supported by an example of Brill and Cohen'S 

which shows that certain homogeneous purely 
gravitational universes can be modified to include a 
homogeneous electromagnetic field but not a homo­
geneous neutrino field. This matter requires further 
investigation, however. 

Note added in proof' Results equivalent to 
Theorems 3.1 and 3.2 of Sec. 3 have been obtained 
independently by J. B. Griffiths and R. A. Newing. 

["Geometrical Aspects of the Two-Component Neu­
trino Field in General Relativity," J. Physics (to 
appear).] 
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In an earlier paper it was shown that invariance of the arbitrary-spin wave equation i(ol{J!ot) = H1J! 
[with 1J! transforming according to the representation D(O, s) EEl D(s,O)] under rotations, T, C, and P, 
and boosts in the direction of the momentum, permits four infinite classes of solutions for H. Here we 
show that when invariance under boosts transverse to the momentum also is imposed, just two possible 
forms for H survive (in the c-number formalism). When we go over to the q-number theory, one of these 
forms leads to a consistent theory for half-integer spins only and the other for integer spins. 

1. INTRODUCTION 

Considerable attention has been bestowed in recent 
years on formalisms1- 6 employing 2(2s + I)-com­
ponent fields for the description of particles (and 
antiparticles) of spin s. Relativistic wave equations in­
volving such fields have the advantage of not requiring 
any supplementary conditions since the field has only 
the minimum number of components dictated by the 
spin value. Such equations are obtained either directly 
from a knowledge of the unitary irreducible represen­
tation of the Poincare group, by assuming the field to 
transform according to a direct sum of two such 
irreducible representations corresponding to spin s 
and mass ±m, as in Foldy's work,! or by one or other 
of a variety of approaches starting with the require­
ment that the field should transform according to the 
representation D(O, s) EEl D(s, 0) of the homogeneous 
Lorentz group.3-S While it might appear that the 
equation resulting from this last requirement would be 
just a special one of an infinity of alternative possi­
bilities which exist for given spin, actually it is quite 
general since the various types of wave equations for 
spin s can all be reduced to this form (in the absence 
of interactions) by making use of the relativistically 
invariant relations that can be written down7•8 be­
tween different irreducible representations of the 
homogeneous Lorentz group. An explicit verification 
of this statement in the case s = i may be found in the 
work of Shay, Song, and Good,9 who have shown how 

to reduce the manifestly covariant Rarita-Schwinger, 10 

Dirac,ll Fierz and Pauli,12 Bargmann and Wigner13 
equations to the form obtained in Refs. 3 and 5 
(which is not manifestly covariant). The use of the 
representation D(O, s) EEl D(s, 0) then amounts simply 
to a convenient standard choice. This is especially 
appropriate for investigations aimed at unraveling the 
roles of the different invariance conditions (and other 
requirements like quantizability of the theory) in 
determining the admissible forms of wave equations 
and other aspects of the structure of theories of par­
ticles of given arbitrary spin. For, unlike the require­
ments in the more conventional approaches in which 
extra conditions (such as that the covariance be 
manifest) impose unintended restrictions in subtle 
ways/4.15 in the derivation of wave equations in­
volving the representation D(O, s) EEl D(s, 0) the 
various requirements can be imposed independently 
and at will; and the resulting class of equations en­
compasses the conventional equations too, in the 
sense already indicated. 

In the course of an investigation of this type, 
initiated by one of us some time ago,S it was shown6 

that if the wave equation 

(hp 
i?it = H1p, (1) 

for a particle of spin s, is to be invariant under (i) 
rotations, (ii) pure Lorentz transformations parallel 
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extra conditions (such as that the covariance be 
manifest) impose unintended restrictions in subtle 
ways/4.15 in the derivation of wave equations in­
volving the representation D(O, s) EEl D(s, 0) the 
various requirements can be imposed independently 
and at will; and the resulting class of equations en­
compasses the conventional equations too, in the 
sense already indicated. 

In the course of an investigation of this type, 
initiated by one of us some time ago,S it was shown6 
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to the momentum direction (longitudinal boosts), and 
(iii) T, e, and P, then the Hamiltonian H must belong 
to one of four infinite classes, each class being charac­
terized by specific commutation relations among the 
representatives of the discrete operations. On account 
of the complexity of the equations expressing invari­
ance under boosts transverse to the momentum direc­
tions, these were not considered in general (though it 
w~s ~erifi:d that the special case of Ref. 5 possesses 
thIS mvaflance too). Instead, the question of quan­
tizabiIity of the theory was investiga,ted,16 and it was 
found that for any given spin a unique H is singled 
out (out of the four classes mentioned above) by the 
condition that the commutator or anticommutator 
of fields should vanish at spacelike separations. Fur­
ther the usual spin-statistics connection follows as a 
consequence of this same microcausality condition­
a remarkable result insofar as the wave equation was 
not even required to be invariant under the proper 
Lorentz group (invariance under transverse boosts 
was not imposed). 

In the present paper we return to the c-number 
theory and investigate the question of invariance 
under transverse boosts. We show that when invari­
ance of wave equation (1) is demanded with respect to 
all proper Lorentz transformations as well as T, e, 
and P, there are still two possible forms of H for any 
given spin. When the further condition of quantiza­
bility is imposed, it follows as a special case of the 
earlier treatment16 that one of the two forms is 
applicable to integer spin particles alone and the 
other to half-integer spin particles. 

2. DETERMINATION OF THE HAMILTONIAN 

The conditions which determine H in the c-number 
theory5 are 

[H, PI.] = 0, [H, J] = 0, [H, K] = iP, (2a) 

required for invariance of (1) under the Poincare 
group, and 

PH = HP, TH = HT, CH = -He, (2b) 

for invariance underP, T, and C. The boost invari­
ance condition [the last of Eq. (2a)] can be re­
expressed as 

[H,2A] = [H, -i[x, H]] == [H, VpH], (3) 

\\ here iA is the "spin" part of the boost generator K in 
the representation D(O, s) E8 D(s, 0). It is shown in 
Refs. 5 and 6 that the set of Eqs. (2), excluding the 
boost invariance condition, has general solutions of 
the following two types: 

H = I e.C. + a I b~B. (4) 
.2:0 .2:0 

and 

H = I e.C. + a I e;C.. (5) 
.2:0 .2:0 

Here B. and e. are, respectively, even and odd func­
tions (polynomials) of ;'p = (A' pip) and are defined 
by 

B. = Av + A_v, Cv = Av - A_v, (6) 

where Av is the projection operator to the eigenvalue 
v, v = -s, -s + 1,'" ,s, of ;'p. The matrix a 
represents the parity operation P?p(x, t) = a?p( -x, t), 
and may quite generally be taken as the Pauli matrix 
PI, which would effect the interchange of the D(O, s) 
and D(s, 0) parts of?p. The coefficients c., b~, and c~ 
are functions of p = Ipl on which the condition 
H2 = p2 + m2 (for unique mass m) imposes the con­
straints5 

c2 + b'2 = E2 c2 _ C'2 - E2 
v v 'v v- . (7) 

Incidentally, by virtue of the same condition which, 
on differentiation, gives [H(V pH) + (V pH)H] = 2p, 
we may rewrite (3) as 

(8) 

It is through this equation that we will impose boost 
invariance. 

In determining the effect of (8) on H we will confine 
our attention to the form (4). [The treatment of (5) 
is quite similar, and we will give only the final results.] 
It is convenient, as in Ref. 5, to consider, along with 
the expression (4), also its explicit polynomial fOfm 

28 28 

H = I fzCp){A' p)! + a I gL(p)(A • p)L. (9) 
!=1 L=o 

In Eq. (9) the sums are to be taken over all odd (or 
even) integers in the specified range according as the 
summation index is lower case (or capital). We shall 
use Greek indices for integers which range over odd 
and even values. These conventions will be followed 
throughout this paper. The relations between the 
coefficients in (4) and (9) are 

28 2. 

C. = I (vp) 1/ , b~ = I (vp)LgL' (10) 
1=1 L=O 

These follow from the spectral representations of 
powers of (A' p): 

(A' p)l = I (Vp)IC., (A, p)L = I (vp)LB.. (11) 
.2:0 .2:0 

It is known6 that if only the longitudinal part of 
(8), obtained by taking the scalar product with p, is 
employed, one is led to ordinary differential equations 
which yield expressions containing an undetermined 
constant of integration for c. and b~. When the full 
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power of Eq. (8) is brought to bear on the Hamilto­
nian, Cv and b~ get determined completely; but, to see 
this, one has to go through a rather involved analysis 
which we now outline. Fuller details may be found in 
Appendix C. 

The first step is to substitute H in the form (9) into 
(8) and evaluate both sides explicitly. For finding 
[H, A] as well for pulling to one end the factor A in 

a-I 

V peA • p)a = I (A • p)!'A(A • pY-Il-I (12) 
1l~0 

(which appears in the left-hand side), we use the for­
mula 

[(A' p)P, A] = pP ± (P) A~-mjp3T - pP ± (P) A~-MA 
m~1 m M~2 M 

+ pP-I ± (P) A~-M+1p, (13) 
M~2 M 

where 

T = A x pip (14) 

and Pa is the third Pauli matrix which here has the 
effect of multiplying the D(O, s) and D(s, 0) parts of 
the wavefunction by 1 and -1, respectively. The 
proof of (13) is outlined in Appendix A. 

With the use of Eqs. (12), (13), and (11) we analyze 
both sides of (8) into linearly independent terms whose 
coefficients on the two sides are then equated. The 
resulting equations contain the Jl and gL through 
sums of precisely the form (10), which can thus be 
replaced by c's and b"S. Finally, we obtain the set of 
relations 

C.(Cv+1 - cv- I ) + b~(b~+1 - b~-I) 

= p(2cv - cv+1 - cv- I), (1 Sa) 

2E2 - cv(cV+1 + CV- I ) - b~(b~+1 + b~_I) 
= p(cv+1 - Cv- I), (1Sb) 

b;(cv+1 - Cv- I ) - Cv(b~+1 - b~_I) 

= p(2b; + b~+1 + b~_I)' (1Sc) 

b;(2cv - CV +1 - CV- l ) - cv(2b; - b~+1 - b~_l) 

= P(b~_1 - b~+1)' (1Sd) 

( 

I dcv db~) b'( ) 2p bv - - Cv - - v v Cvl- l - Cv- 1 
dp dp 

+ vcv(b~+1 - b~-l) = vp(2b~ - b~+1 - b~-I)' (1Se) 

In the case when v has its minimum value Vo, the 
symbols cvo- 1 and b~o-l are themselves undefined; but 
in (15) they simply stand for II [(Vo - l)p]!/z and 
IL [(vo - l)p ]LgL' respectively, which reduce to - C1 

and b~ in the integer spin case (vo = 0) and to -c! 
and bi in the half-integer spin case (vo = t). When v 
has its maximum value v = s, the linear independence 

conditions are different from those for v ¥: s (see 
Appendix B), and consequently the unwanted Cs+I 

and b;+1 drop out altogether. The equations in this 
case turn out to be of exactly the same form as the 
following recurrence relations which one obtains from 
Eqs. (1Sa)-(15d): 

E2 - CvCv- 1 - b;b~_l = p(cv - Cv- I), (16a) 

Cvb~_l - b:cv_1 = p(b~ + b~_l)' (16b) 

The b"s can be eliminated from (16) with the aid of the 
first of Eqs. (7). The result is that either Cv = Cv-I or 

Cv (cv_IIE) + tanh 20 
-

E 1 + (cv_lIE) tanh 20 ' 

v = s, s - 1, ... , Vo + 1, (17) 

where () is defined by 

E = m cosh (), P = m sinh (). (18) 

If we take Cv = Cv- l = ... = cVo ' on substituting the 
value of cVo (see below) into (16), we are led to a 
contradiction with the mass conditions (7). Thus, 
only the recurrence relation (17) is to be considered, 
and its solution is immediately obtained as 

cv =Etanh2v(}, v=s,s-l,"',vo' (19) 

There exists an alternative solution of (17), namely 
Cv = E coth 2v(}, but it is inconsistent with the special 
case v = Vo of Eqs. (IS). In the half-integer spin case, 
for example, one gets for v = t 

(20) 

which, together with (7), gives c! = p = E tanh (), 
confirming (19) and ruling out the other solution of 
(17). The same thing happens in the integer spin case 
too. The solution is thus given by (19) together with 

b~ = E sech 2v(}, (21) 

which is a consequence of (19) and (7). Equation 
(lSe) has not been made use of in the above analysis, 
but one may verify that our solution satisfies this 
equation too. We conclude then that the only Hamil­
tonian of the type (4) which is consistent with boost 
invariance is 

H = ~ E tanh 2v8 Cv + (J ~ E sech 2v8 Bv . (22) 
v v 

An analysis on the same lines as above, starting with 
the form (5) instead of (4), shows that there exists 
one admissible Hamiltonian of that type, namely 

H = ~ E coth 2v() C v + (J ~ E csch 2v() C v ' (23) 
v v 
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It may be noted that (22) is the special case corre­
sponding to 'YJv = 0 of the class of Hamiltonians com­
prised under case (i) of Ref. 6, which is associated 
with the commutation rules TP = PT and CP = -PC 
between the discrete symmetry operators. Similarly, 
(23) belongs to case (iii), characterized by TP = PT 
and CP = Pc. The other two classes are now com­
pletely ruled out. 

3. DISCUSSION 

In determining the forms of H allowed by Poincare 
and T, C, P invariance, we have steered clear of the 
trammels of nonessential criteria like manifest co­
variance and other considerations like locality which 
are not immediately pertinent to the question of 
Lorentz invariance. From earlier workl7 •6 we know 
that with either of the choices (22) or (23) for H there 
are two possibilities for the metric operator M, one 
positive definite (M1) and the other indefinite (M2) , 

such that f 1pt Mrpdax is Lorentz invariant. Thus, the 
freedom in the c-number theory is fourfold. If now 
one demands also locality (in the sense that observ­
abies of the field, like total energy and momentum, be 
expressible as space integrals of local functions of the 
field), then only two possibilities survive,16 namely, 
Eq. (22) taken with Ml and Eq. (23) with M2. On the 
other hand, if quantizability of the theory is demanded 
(with the condition that either the commutator or the 
anticommutator of 1p and 1p* should vanish at space­
like separations), then it follows under much more 
general conditions (without requiring locality as above 
or even invariance under transverse boosts) that Eq. 
(22) is the only one applicable to· half-integer spin 
particles (which have to be fermions) and that Eq. 
(23) is applicable only to integer spin bosons.16.1S 

Also, the requirement that field observables be 
generators of Poincare transformations then leads to 
the association of Ml with fermions and M2 with 
bosons.16 As a consequence, one gets locality as a by­
product in the quantized theory. 

As the next step in the program, to delineate 
clearly the roles of the various conditions which go 
into the formulation of field theories of arbitrary-spin 
particles, we have investigated the consequence of 
relaxing the discrete invariance requirements. The 
results will be reported separately. 
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APPENDIX A 

To establish that the commutator [(A' p)lI, A] is 
given by the expression (13) for any positive integer {J, 
we use the method of induction, starting with 

[(A' p), A] = piPaT:, (AI) 

[(A' p)2, A] = 2p2ArJpaT: - p2A + pApp. (A2) 

These relations are deduced directly from the fact that 
A = PaS and [Si' Sj] = i€jjkSk' Assume now that Eq. 
(13) is valid for some odd integer {J = I, in which case 
it reads 

[(A' p)l, A] = pi ± ( I) A~-mip3T: _ pi Ii ( I )A~-MA 
m=1 m M=2 M 

+ pl-l Ii ( I )A~-M+1p. (A3) 
M=2 M 

Then, for {J = 1+ 2, we get, with the aid of (A2) , 

[(A' p)1+2, A] 

= (A' p)l[(A • p)2, A] + [(A' PY, A](A • p)2 

= p1+2[ ± ( I ) A~-m+2 + ± (I) A~-m 
m=1 m m=1 m 

+ 2 ;L (~) A~-M+1 + 2A~+1J i PaT: 

_ pl+2[ Ii ( I ) A~-M+2 + Ii ( 1 ) A~-M 
M=2 M M=2 M 

+ 2Jl(~)A~-m+1 + A~JA 
+ pl+2[ Ii ( I )A;-1IH2 + I ( I )A~-M 

M=2 M M=2 M 

+ 2 il (~) A~-m+1 + A~ ];..pP' (A4) 

When the summation indices are suitably redefined 
and the relation 

between binomial coefficients is used, (A4) reduces to 
the form (A3) with 1 replaced by I + 2. It follows then 
that if Eq. (A3) is true for an odd integer I, it is also 
true for the next higher one, (I + 2). However, Eq. 
(A3) is independently verified to be true for 1 = 1 
[Eq. (AI)]; hence, it is valid for all odd-integer values 
of {J. A similar induction procedure starting with 
(A2) shows that the relation 

[(A' p)lI, A] = pII :~1 (!)A!-mipaT: 

- pII"i2(!)~-MA 
+ pII-1 ± ({J) A!-M+1p, (A6) 

M=2 M 
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which is the specific form of (13) for an even valqe of 
p, holds for all even p. 

Equations (A3) and (A6) can be used directly for 
evaluating V,,(A. p)lI. For an odd value, p = I, for 
instance, we have 

where uv' vv, and Wv are undetermined coefficients. 
On taking two successive cross products of (B2) with 
p, we find 

1-1 

V,,(A. p)l = 2 (A. p)~A(A. py-a-I. (A7) which shows that Wv and Vv in (B2) are related by 
«=0 

By pulling A to the right, using( A3), then re-expressing 
powers of (A. p) in terms of Bv and Cv, using (11), 
and by observing that the sum over IX becomes just a 
binomial series, we finally obtain the following ex­
plicit form, which will be used in Appendix C: 

Vp(A. ,)l 

! I BvA 
= t I H(v + Op) - r(v - l)p] } -

v P 
! ! I eviPa~ - t 2 {[(v + Op] + [(v - l)p] - 2(vp)}--

• p 

- t 2 {v[(v + opt - v[(v - Op)' - 21(vp)'} e:p . 
• p 

(A8) 

For the gradient of an even power of (A. p), the use of 
(A6) gives an expression identical to (AS) except that 
Bv and C. are interchanged and, of course, I is 
replaced by L: 

V,,(A. p)L 

~ ! LevA =! ~ {[(v + l)p) - [(v - l)p] }-
P 

! L L Bvip3~ - t 2 {[(v + l)p] + [(v - l)p] - 2(vp) }--
, p 

- ! I {v [(v + l)p]L - v[(v - l)p]L 
v 

L} B.p 
- 2L(vp) -2' (A9) 

p 

APPENDIX B 

The reduction of the boost invariance condition (8) 
to the set of Eqs. (lS)-which is carried out in detail in 
Appendix C-depends on the fact that the quantities 
iCVP3~' BvA, and Cvp(p are linearly independent for 
v ~ s while, for v = s, 

Ci Ps~ - B.A + sC.p/p = o. (B1) 

We prove these results here. 
Let us suppose that 

(B2) 

(B4) 

Now take the cross product of (82) with A and use 
the fact that 

~ x A = (A x p!p) x A = iPa't - kpA 

+ s(s + l)p/p. (BS) 

We then get, with the use of (B4), 

(vv. - u.)e.'t + (v, - vu.)ipsB.A 

+ u,s(s + l)ipaC.p/p = O. (86) 

The dot product of this equation with pip yields 

([s(s + 1) - v2]u. + vV.}ipaC. = 0, (B7) 
so that 

u. = -vvv/[s(s + I) - v21. (BS) 

On the other hand, on taking the cross product of 
(82) with p once and then multiplying it by i PsC., we 
can get 

vve.iPa't + u.B.A - vu.e.plp = O. (B9) 

Comparing (B9) with (B6), we can easily write down 
[similar to Eq. (BS)] 

v. = -vuv([s(s + 1) - v2]. (B1O) 

Finally, we combine Eqs. (BS) and (810) to obtain 

u.[v(v + 1) - s(s + l)][v(v - 1) - s(s + 1)] = O. 

(811) 

This condition is automatically satisfied when v = s; 
then (82) reduces to (81) by virtue of (B4) and (B8). 
For all other v:?: 0, (811) requires that u. should 
vanish and hence v. and Wv too, so that no nontrivial 
linear relation exists among the three quantities we 
were concerned with. This completes our proof. 

APPENDIX C 

We shall outline here how the results proved in 
Appendices A and B can be used to solve Eq. (8), 
namely, 

HVpH = [H, A) + p. (el) 

We observe first that the formula (A8), applied to the 
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form (9) of H, yields 

" ) B;A V1JH = t k (C V+1 - Cv- l -

v P 

, , aC;A + t ~ (bV+1 - bv- l )-­

P 
C)P3't - ~. I (C v+! + Cv- I - 2c.) ---

v p 

, , , aB)P3't 
- t ~ (bv+1 + by _ 1 - 2b.}----'-~ 

v p 

( 
dCv) CvP - t ~ Y(CV+I - CV-l) - 2p dp --;;; 

(
, , db~) aBvP - t L Y(bv+! - bv-I) - 2p - -2-' 

v dp p 

(e2) 

The coefficients Cv and b~, which occur in the form (4) 
of H, enter here through relations of the form (10). 
The sums overy in (e2), which are to be carried from 
'I' = Yo (0 or t) to 'I' = s, bring in symbols cs+!, b;+!, 
Cvo-I, and b~o-I' which are undefined in the sense that 
they do not occur in H. They are used here (as already 
explained in the text) as a formal notation for series 
like 

~ [(s + l)P]~1 = cs+1' 
I 

I [(Yo - l)p ]LgL = b~o-I' etc. (e3) 

Now, multiplying out H [Eq. (4)] and V1JH [Eq. (e2)] 
and making use of the fact that 

CIlCV = BIlBv = B/>Ilv, BIlCv = CIlBv = C/5Ilv , (e4) 

we find the left-hand side of Eq. (el) to be 

_ I _ ' , _ ' ) CvA 
HVpH - "2 ~ [CV(CV+I CV-I) + bv(b V+1 bv- l ] 

v p 
- t I [cicv+! + CV- 1 - 2cv) 

• 
" , , B)P3't + b.(b.+1 + b._1 - 2b.)] -­

p 

- t ~ [cv(Y(CV+l - Cv-I) - 2p ~:v) 

(
, ') db~)JBvP + b~ y(b.+! - b._ l - 2p dp --;;; 

+ t I [b~(c.+! - Cv- l ) 

• 
, , aB.A 

- c.(bv+! - by_i)] -­
p 

+ t 2 [cvCb~+! + b~_1 - 2bD 
v 

, ) aC)Pa't 
- b.(cv+! + Cv_I - 2c. ] _.--­

p 

I ,,[ (, ') db~) + "27 Cv Y(bv+! - b._1 - 2p dp 

,( ) dC.)Jacvp - bv Y(CV+I - Cv- l - 2p d -2-' 

P p (C5) 

The right-hand side is evaluated, starting with the 
polynomial form of H, with the aid of Eqs. (A3) and 
(A6), and is reduced, by using Eq. (10), to 

[H, A] + P = t ~ (2c. - cv+! - Cv_I)CvA 
v 

+ t ~ (CV+I - cv_I)B)P3't 
• 
" ~p + t k [Y(C y+! + C._I - 2cy ) + 2p]-
• p 

+ t L (2b~ + b~+! + b~_I)aBvA 
• 

- t ~ (b~+! - b~_I)aC)Pa't 
• 

" ' , , aCyp + t k [v(2bv - by+! - bV-I)] -- . 

• P (C6) 

Now, it follows, from what we have proved in Appen­
dix Band Eq. (C4) , that CvA, BJp3't, and Bvp/p are 
linearly independent for all v ¥- s, and it can then be 
seen trivially that aB.A, aCJpa't, and aCvp/p are 
linearly independent of the first set as well as among 
themselves. Consequently, coefficients of these oper­
ators in (C5) and (C6) , which form the two sides of 
Eq. (CI), can be separately equated. The result is the 
set of Eqs. (15) given in the text. Finally, for the case 
'I' = s, the relation (Bl) shows that the coefficients of 
co+! (and b;+l) in (C5) and (C6) are identically zero, 
so that they vanish out, and then one simply gets Eqs. 
(16) with v = s. 
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The relativistic Kepler problems in Dirac and Klein-Gordon forms are solved by dynamical group 
methods for particles having both electric and magnetic charges (dyons). The explicit forms of the 
0(4, 2)-algebra and two special 0(2, I)-algebras (which coincide in the symmetry limit) are given, and a 
new group-theoretical form of the symmetry breaking is pointed out. The Klein-Gordon 0(2, I)-algebra 
also solves the dynamics in the case of very strong coupling constants (attractive singular potential), 
if the principal series of representations is used instead of the discrete series. 

1. INTRODUCTION 

It is well known by now that the nonrelativistic 
Schrodinger theory for the Kepler problem can be 
treated completely algebraically in an irreducible 
unitary representation of the dynamical group 0(4,2). 
In the Appendix, to which we shall refer frequently, 
we give a new version of this treatment. It is also clear 
that the relativistic Kepler problem (Klein-Gordon 
and Dirac equations) does not have the 0(4)-sym­
metry of the nonrelativistic problem. If the two 
particles forming the atom have both electric and 
magnetic charges, then the 0(4)-symmetry is broken 
even in the nonrelativistic Kepler problem. The main 
purpose of this paper is to show the remarkable 
group-theoretical way the 0(4)-symmetry is broken 
in the above cases. All the above problems are 
actually exactly soluble, though some of these 
solutions have not yet been reported in the literature. 
We hope also to demonstrate the power of the method 
of dynamical groups in solving these problems, 
including the strong coupling case. 

For the ordinary relativistic Dirac problem, the 
correspondence between the bound-state spectrum and 
an 0(4, I)-representation was given by Kiefer and 
Fradkin1 and Pratt and Jordan.2 The spectrum­
correspondence is not the complete solution of the 
problem and the operators given in Ref. 1 are ex­
tremely complicated, because at that time the im­
portance of the tilted states (see Appendix) was not 
recognized. The role of the 0(4)-symmetry of the 
relativistic hydrogen atom (no spins) in covariant 
theories based on the Bethe-Salpeter equation was 
studied in Refs. 3 and 4. Although the use of the 
dynamical group 0(2, 1) for the radial wave equation 
of the Klein-Gordon and second-order Dirac equa­
tions is also known,5 the complete dynamical group has 
not been given before. 

Early studies of the group property and solution of 

the Kepler problems with both electric and magnetic 
charges are due to Fierz6 and Banderet.7 More 
recently Hurst8 related the Dirac quantization 
condition9 to the condition of integrability of the Lie­
algebra to the Lie group. ZwanzigerlO has solved a 
related nonrelativistic, Kepler problem with magnetic 
charges plus an extra particular 1/r2 potential by 
using the 0(4)-symmetry. This case is particularly 
simple, as we shall observe again. The relativistic 
Kepler problem with magnetic monopoles, as far as 
spectrum is concerned, was studied recently by 
Berrondo and McIntoshY It was then recognized 
that the Kepler problem with magnetic charges 
realizes a different representation of the dynamical 
group 0(4,2) than the ordinary Kepler problem, 
and a new quantum number f.1, arises.12 With this a 
connection is established to the 0(4, 2)-models of 
hadrons and to a theory of electromagnetic origin of 
strong interactions.12 

Thus the motivation to complete the study of the 
Kepler problem with magnetic charges is threefold: 

(1) to give the solutions of the Schrodinger, Klein­
Gordon, and Dirac forms of the Kepler problem in 
the case of particles with both electric and magnetic 
charges and to treat the case of the very large coupling 
constant; 

(2) to exhibit the dynamical group 0(4, 2) for these 
cases and the nature of symmetry breaking, because 
the type of symmetry breaking may be applicable to 
other symmetry-breaking processes; 

(3) to have results applicable to the theory of strong 
interaction phenomena based on the concept of 
magnetic charges. 

We should mention that the spin-orbit symmetry 
breaking of the relativistic atom has also been treated 
in the context of the covariant infinite-dimensional 
wave equations. In the spinless case, the relevant 

841 
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infinite component wave equation for the H atom 
contains also correctly the recoil effects.13 In the case 
of spin, one can use the basic 0(4, 2)-group (enlarged 
by Dirac matrices to account for the spins), but one 
adds suitable new terms in the wave equation to 
describe the spin-orbit interactions.14 

2. GROUP THEORETICAL SOLUTIONS 

A. Hamiltonians 

It will be convenient to treat Schrodinger, Klein­
Gordon, and Dirac forms in a parallel fashion, as we 
go along. 

We consider a particle with electric charge e and 
magnetic charge g, or simply with charge q = (e, g). 
The electromagnetic field is described by the vector 
potentials Ap, = (Ao, -A) = (qJE' -AB) and Ap, = 
(1'0' -A) = (qJB' +AE)' The relativistic Lagrangian 
of the spin less particle in the field is 

L = mc.Ju 2 + (e/c)Ap,uP, + (g/c)Ap,u". (2.1) 

Hence we have the canonical momentum 

p" = mcu" + (e[c)A". + (g[c)A". (2.2) 

and, from the Euler-Lagrange equation, the Minkowski 
force 

where 

F".v = Av;p, - Ap,;v, 
- - - 1 F).P Fp,v = Av;p, - Ap,;v = z€"v;'p . 

(2.3) 

From the spatial components of K" we find, as 
desired, 

F = eE - (e/c)(B x v) + gB + (gjc)(E x v). (2.3') 

Because ullu". = 1, we obtain from (2.2) 

[PIl - (ejc)AIl - (g/c)A,,]2 = m2c2. (2.4) 

Consequently, 

H IKGl == cpo = eAo + gAo 

+ [m 2c4 + (cp - eA - gA)2]!. (2.5) 

This is the desired Hamiltonian in the Klein-Gordon 
form. To obtain the Hamiltonian in the Schrodinger 
form, we expand formally the square root and 
subtract the rest energy (physically this expansion is 
meaningful only if A is small because g is very large!) 
with the following result : 

HIS) == eAo + gAo + (1/2m)[p - (e/c)A - (g/C)A]2. 

(2.6) 

Finally, the Dirac form of the Hamiltonian is obtained 
by linearizing (2.5) with Dirac matrices: 

HiD) == eAo + gAo + ex· (cp - eA - gA) + yOmc2
• 

(2.7) 

We also give the second-order Dirac Hamiltonian 

W) - ( - 2 2 4 H II == eAo + gAo + [ cp - eA - gA) + m c 

- elic(o • B - iex· E) 

- glic( - a . E - iex • B)]!. (2.8) 

B. Two-Body System 

Let the particle of charge ql = (el' gl) move now in 
the field of another particle of charge q2 = (e2, g2) 
situated at the origin and thought to be heavy. In 
Eqs. (2.5)-(2.8), we replace (e, g) by (el , gl) and (in 
Gaussian units) let 

e2 
Ao = -, 

r 
where 

D(r) = r x n(r. n) , (2.9) 
r[r2 - (r. 1\)2] 

where il is an arbitrary unit vector. D(r) has the desired 
property V x D(r) = i/r2. We then obtain, with the 
abbreviations (Ii = c = I) 

IX = -(ele2 + glg2), 

'" = (elg2 - gle2), 

7t = P - ",D(r), 

the Hamiltonians 

HIS) == O/2m)1T2 - IX/r, 

H(KGl == [1T2 + m2]! - IX/r, 

HjD> == ex • 7t + yOm - IX/r, 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

Hjf) == [1T2 + m2 
- (",0 + iIXex) • i/r2]! - IX/r. 

C. The Dynamical Group 0(4,2) and the Two 0(2, 1)­
Algebras 

Consider the following generalized operators which 
reduce to those of the usual hydrogen atom, (AI) 
and (AI4), in the special case", = 0: 

J = r x 7t - ",i, 

2 ",2 
A = tr1T - 7t(r. 7t) + (",/r)J + -2 r - ir, 

2r 

2 ",2 
M = ir1T - 7t(r • 7t) + (",/r)J + -2 r + ir, 

2r 

r = r7t, 

r o = lCr1T2 + r + ",2/ r ), 

r 4 = i(r1T2 - r + ",2/r), 

T=r·7t-i. 

(2.14) 

These operators also satisfy the commutation relations 
of the Lie algebra of 0(4,2) as before, as can be 
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verified by direct, though laborious, calculation. This 
fact is more remarkable than it appears at first glance, 
for the generalized momenta 7t = P - ,uD(r) [see 
Eqs. (2.12) and (2.9)] no longer commute among 
themselves as do the canonical momenta p; rather we 
find [7Ti' 7T j ] = i,ueiikxkjr3. The Casimir operator of 
the 0(2, 1 )-subgroup generated by f 0' f 4, T is again 
as in (A3) 

Q2 = r~ _ r! - T2 = J2. (2.15) 

Thus, if we had an associated Hamiltonian 

Ha == 7T2j2m - ocjr + Il2j2mr2, 

we would have 

e = r(Ha - E) 

'(2.16) 

= (lj2m)(fo + f 4) - E(fo - f 4) - oc, 

i.e., precisely the same equation as (A4); hence all the 
equations up to (A13) would equally apply to this 
case. Instead of Eq. (AI5) the Casimir operators 
would beI5 

Q2 = 3(,u2 - 1), 

Qa = 0, Q4 = ,u2(l - ,u2). (2.17) 

In particular, we would have 0(4) symmetry, the 
Balmer formula (A8), etc. This is indeed the case 
studied by Zwanziger,1° but not the case we want to 
solve. There is no physical reason to assume the extra 
scalar potential ,u2/2mr2 in (2.16). Instead we want to 
use the Hamiltonians (2.13) which include no extra 
scalar potential. 

We notice that the three operators 

r~ = !(r7T2 + r), 
r~ = !(r7T2 - r), 

T'= T 

(2.18) 

also generate an 0(2, I)-algebra with the Casimir 
operator 

(2.19) 

For our Hamiltonian HCs) == 7T2/2m - oc/r, we have 

e = r(H CS ) - E) 

= (1/2m)(r~ + r~) - E(r~ - r~) - oc, (2.20) 

again an equation of exactly the same type as (A4). 
Thus, in terms of the spectrum of f~ and f~, we can 
immediately use the solutions (A8) and (All), The 
only thing we do not know a priori is the range of 
(J2 - ,u2), Eq. (2.19), that is contained in the spectrum 
of H CS ). For the ordinary atom, a single representation 
of the full dynamical group 0(4,2) [Eqs. (AI4) and 
(AI5)] determines the spectrum of the Casimir 
operator Q2 of the 0(2, I)-subgroup and hence ]2. 

Now, however, the primed generators (2.18) cannot 
be completed to an 0(4,2)-algebra as the un primed 
ones given in (2.14). Indeed, if they could be, we 
would still get an 0(4)-symmetry which we know we 
do not have. Thus, we have two 0(2, I)-algebras, 
each commuting with J, whose Casimir operators, 
(2.15) and (2.19), are related by 

(2.2l) 

We can indeed view ,u2 as the parameter of symmetry 
breaking; for ,u2 = ° we get back the results of 
the Appendix. It is important to note that the "un­
symmetrical" case is also exactly soluble; this is because 
we know the range of J2 from the 0(4, 2)-representation 
(2.14), and we know the spectrum of f~ and f~ from 
the value of Q'2. Thus, for E < 0, we solve e<I> = ° 
(2.20) by analogy with (A 7) and (A8), and im­
mediately have 

[( -2E/m)!r~ - oc]<l> = ° 
and 

(2.22) 

where n' is the (discrete) spectrum of f~. From (2.19), 
letting 

Q'2 = j(j + 1) _ ,u2 = cp'(q/ + 1), 
we find 

cp' = -t ± [(j + t)2 - ,u2]!. (2.23) 

Hence in the D+-representation of 0(2, I)-which is 
bounded below-the spectrum of f~ has the range 

n' = _ cp', - cp' + 1, - cp' + 2, ... 

= t + [(j + W- ,u2]i, t + [(j + W - ,u2]i, . ... 

(For comparison the range of the eigenvalues of fo 
is n = j + 1, j + 2,'" .) Consequently, Eq. (2.22) 
can be written as 

E. = -tmoc2{s + t + [(j + W - ,u2]i}-2, 

S = 0, 1,2,3,···. (2.24) 

For,u = 0, we recover the Balmer formula. For fixed 
,u :;!: 0, we see from the 0(4,2)-representation 
(2.14)-(2.17) that again, for each n(fo), the range ofj 
is 

j:I,uI, l,ul + 1, l,ul + 2,'" n - 1, (2.25) 

which completes the specification of the spectrum.15 

In the case of the Klein-Gordon Hamiltonian, the 
0(4,2)-representation (2.14) remains the same. But 
instead of (2.18), we see that 

r~ = t(r7T2 + r - oc2/r), 

r; = !(r7T2 - r - oc2/r), (2.26) 

T'= T 
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also form the Lie algebra of an 0(2, I)-group with 
the Casimir operator 

Q,2 = r~2 _ r~2 _ T2 = J2 _ ft2 _ rt2 = cp'(cp' + 1), 

so that 
cp' = -i ± [(j + t)2 - ft2 - rt2]!. (2.27) 

The Lie algebra (2.26) solves the square of H(KGl 

given in (2.13) in the sense that 

o = r[(H(KG) + rt/r)2 - (E + rt/r?] 

= r7T2 - (E2 - m2)r - 2rtE - rt2/r 

= r~ + r~ - (E2 - m2)(r~ - r~) - 2ocE, (2.28) 

which is again an equation of the type (A4) or (2.20). 
The equation 0 <i> = ° can again easily be solved by 
putting <i> = ei8T<D and by choosing tanh (j = (E2 -

m2 + 1)/(E2 - m2 - 1). Then 

{[ -4(E2 - m2)]!r~ - 2rtE}<D = O. (2.29) 

From (2.27), the spectrum of r~ is given by 

n' = s + t + [(j + t)2 - ft2 - rt2]!, 

s=0,1,2,···. 

Hence, the energy spectrum becomes 

E. = m(l + rt2{s + t + [(j + t)2 - ft2 - rt2]!}-2)-! 

s = 0, 1,2,···. (2.30) 

Finally, in the case of the second-order Dirac equation, 
we introduce instead of (2.26) the 0(2, I)-algebra 

r~ = t{r7T2 + r + (1/r)[ _rt2 
- (fta + irta.) • il}, 

r~ = t{r7T2 - r + (1/r)[ _rt2 - (fta + irta.) • il}, 

T' = T, (2.31) 

with the Casimir operator 

Q'2 = J2 - ft2 - rt2 - (fta + irta.) • i. (2.32) 

The operator 

r = a • J + (fta + irta.) • i + 1 

has the property that 

r 2 = (J + ta)2 - ft2 - rt2 + t. 
Let 

(t=J+ta; 
then 

(2.33) 

f2 = (t2 - ft2 - (,(2 + t = j(j + 1) - ft2 - (,(2 + <1-. 

(2.34) 

r are then 

r:y = ± [(j + W - ft2 - (,(2]!. (2.35) 

Now, from (2.32), 

Q'2 = r 2 _ r = y2 - Y = cp' (cp' + 1) 
or 

cp' = -y or y - 1. (2.36) 

For the Dirac Hamiltonian (2.13), we get then from 
the second-order equation 

(0 = r[(H(D) + (,(/r)2 - (E + (,(/r)2] 

= r7T2 - (E2 - m2)r - 2rtE - (l/r) 

x [(,(2 + (Ila + irta.) • i] 

= r~ + r~ .,... (E2 - m2)(r~ - r~) - 2('(E, (2.37) 

i.e., the same equation as (2.28). Thus we can im­
mediately write down the energy spectrum in analogy 
to the previous case: 

Es = m[l + (,(2{S + [(j + W - ft2 - (,(2]!}-2]-!, 

s = 0, 1,2,3, .. ·. (2.38) 

This differs from the Klein-Gordon spectrum (2.30) 
in the additive term t after s and in the eigenvalue j 
of total angular momentum which here includes spin. 

D. The Case of Large Coupling Constants 

Equations (2.30) and (2.38) hold only for a small 
coupling constant 

(,(2 < (j + W - ft2, 

because then cp' [which is associated with the Casimir 
operator Q'2 of 0(2, 1)] is real [Eq. (2.27)], and we 
obtain the D+-representations of the discrete series. 

If (,(2 is large, however, as is the case for magnetic 
charges, (rt = 137/4 instead of 1/137 for ordinary 
atoms !)12 we must use for cp' a value corresponding to 
the principal series of representations 

cp' = -t + 0.., A real. (2.39) 
Then 

Q'2 = cp'(g/ + 1) = _/1.2 - i. 

In the case of the Klein-Gordon equation, for 
example, from Eq. (2.27) 

Q'2 = J2 _ ft2 _ (,(2, 

and we obtain 

(2.40) 

Note that j now denotes the total angular momentum Thus we have a particular representation in the 
of the spin-t particle in the atom. The eigenvalues of principal series. 
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In the case of the principal series of representations 
of the Lie algebra of 0(2, 1), the spectrum of r 0 

ranges from - 00 to + 00, i.e., it is not bounded below. 
Moreover, a new invariant quantum number Eo 
occurs in addition to the invariant cp.16 The spectrum 
of f~ is then 

eigenvalues n if E < O. Hence, 

En = -Hmrx2/n2). (A8) 

For E > 0, fo cannot be diagonalized; we go back to 
Eqs. (A4) and (A5), and let 

(A9) 
r~:Eo + s, s = 0, ±1, ±2, .... 

We have then from (2.29) 

(2.41) and choose tanh 0' = (E - I/2m)/(E + I/2m). Then 
again, from (A5), 

Es = m [1 + rx2(s + EO)-2]-!. (2.42) [(2E/m)!r4 - rx]cIJ' = 0. (AlO) 

The new quantum number is fixed within the 0(2, 1)­
subgroup; it can be determined only within the 
representation of the big group 0(4, 2). 

The physical reason for the drastic change in the 
case of a large coupling constant for relativistic 
equations is that we now have a large attractive 
singular potential at r = O. In the case of attractive 
singular potentials we cannot use the usual boundary 
conditions of the Schrodinger treatment; the solutions 
form an overcomplete set, and one needs indeed a 
new quantum number to characterize the problem 
completely.17 

The operators 

APPENDIX 

ro = Hrp2 + r), 
r 4 = Hrp2 - r), 

T=r·p-i 

(AI) 

satisfy the commutation relations of the Lie algebra 
of the group 0(2, 1): 

[ro, r 4] = iT, [r4' T] = -Wo, [T, ro] = ir4 · 

(A2) 
The Casimir operator is given by 

Q2 = r~ _ r~ - T2 = (r x p)2 = J 2
• (A3) 

Consequently, from the Hamiltonian H = p2/2m -
rx/r, we obtain (Ii = c = 1) 

0== r(H - E) = 1/2m(fo + fJ - E(ro - f 4) - rx. 

(A4) 
The equation 

(A5) 

can be solved as follows. Let 

<1> = ei8T<D, (A6) 

and choose tanh 0 = (E + I/2m)/(E - 112m); then 
Eq. (A5) reduces to 

[( - 2E/m)!r 0 - rx]cIJ = O. (A 7) 

Thus <D's are the eigenstates of f 0 with discrete 

Now r 4 has a continuous real spectrum 2. Hence 

E = Hmrx2/22). (All) 

The states <1> must be normalized as follows, 

(<1>1 (ro - r 4) 1<1» = 1, (AI2) 

and are not identical with the Schrodinger wavefunc­
tions 'If. The physical normalized solutions of (A5) 
are then 

<1> = (lln)ei8T In), (A 13) 

where In) is a basis of the discrete unitary irreducible 
0(2, 1) representation D~ with Casimir operator 
given in Eq. (A3): Q2 = j(j + 1) = cp(cp + 1), cp < O. 
Hence cp = -j - l. Therefore, for each j, n = 
j + 1 ,j + 2, .. '. Similar equations hold for the 
continuous spectrum. 

The treatment above does not tell us yet what 
values of j occur; it is yet incomplete. The complete 
solution is as follows. The operators (AI) together 
with 

J = r x p, 

A = irp2 - p(r. p) - ir, 

M = irp2 - p(r. p) + ir, 

r = rp 

(AI4) 

satisfy the commutation relations of the Lie algebra of 
0(4,2); J and A (Runge-Lenz vector) together 
generate a compact 0(4) subgroup that commutes 
with r o. (Note then that J and "tilted A" commute 
with 0.) The Casimir operators of the Lie algebra of 
this 0(4,2) are 

Q2 = J2 + A2 - M2 - r 2 + r~ - r! - T2 = -3, 

Q3 = 0, Q4 = O. (AI5) 

In an irreducible representation of SO(4,2), for 
eachj = 0, 1,2,3,'" we haven =j + l,j + 2,···. 
Or,foreachn = 1,2," 'wehaveI= 0,1,'" n - 1. 
The energy levels depend only on n2 , which is the 
basis of the O(4)-symmetry. 
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Unitary and nonunitary representations of the SL(2, C) group are investigated in such a basis, in 
which the subgroup diagonalized is that one which in the four-dimensional representation leaves invariant 
the 4,vector p" = (HI + v), 0, 0, HI - v» for an arbitrary real value of p~ = v. The split of the 
representation space into irreducible subspaces changes smoothly when varying the value of v. The 
formalism is of importance in physical theories which postulate analyticity requirements and Lorentz 
invariance simultaneously (e.g., Regge and Lorentz pole theory). In this paper we construct explicit 
basis functions of the representation spaces. 

1. INTRODUCTION 
The representation theory of the SL(2, C) group 

is of great importance in physics, and a lot of work 
has been devoted to construct its representations 
explicitly. It is, however, surprising that attention has 
hardly been paid to constructing and investigating 
them in an explicitly "analytically continuable" form. 
We mean the following: The representations of the 
SL(2, C) group are usually given in an SU(2) , 
SU(1, 1), or E(2) basis, i.e., the representation space 
is given as a direct sum (integral) of subspaces invari­
ant with respect to the little groups of the 4-vectors 
(l, 0, 0, 0), (1,0,0, 1), and (0,0,0, 1), respectively. 
Physical theories, which postulate analyticity require­
ments together with Lorentz invariance, necessitate 
the construction of SL(2, C) representations over such 
spaces, which are split into subspaces invariant with 
respect to the little group of an appropriately chosen 
4·vector, e.g., p" = O(l + v), 0, 0, iO - v». Its 
length p! = v is kept a free parameter. Moreover, we 
want the representations to be analytic in this variable 
v in the sense that the split of the representation space 
into irreducible subspaces changes smoothly when 
we vary the value of this parameter. 

In this paper we will explicitly construct the basis 

states for such representations. We shall apply a 
standard procedure.1 This method consists first of 
choosing a subgroup which one wants to be diagonal 
in the basis to be constructed and second of deter­
mining the eigenfunctions of the Casimir operator of 
this subgroup. 

For this purpose, we must obviously specify such a 
subgroup of SL(2, C) which, depending on the value 
of a suitable parameter, becomes deformed from 
SU(2) through E(2} to SU(1, 1). Then one must 
determine the representation matrix elements of this 
group, which is the second point of the previous 
program above. These problems have already been 
treated2•3 but without embedding this group into 
SL(2, C). [The term "interpolating group (IG)" was 
introduced for this group3; we are going to use it in 
this paper as well.] 

After having constructed the basis with the above 
specified properties in the SL(2, C) representation 
space, we naturally examine the matrix elements of 
finite SL(2, C) transformations and the problem of 
the transformation coefficients between different basis 
sets.4 Here we give them only in integral forms, as the 
explicit calculations can be found in a separate paper.s 

In Sec. 2, we shall summarize the results of the 
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SL(2, C) Representations in Explicitly "Energy-Dependent" Basis. I 

K. SZEGO AND K. T6TH 
Central Research Institute for Physics, Budapest, Hungary 

(Received 14 July 1970) 

Unitary and nonunitary representations of the SL(2, C) group are investigated in such a basis, in 
which the subgroup diagonalized is that one which in the four-dimensional representation leaves invariant 
the 4,vector p" = (HI + v), 0, 0, HI - v» for an arbitrary real value of p~ = v. The split of the 
representation space into irreducible subspaces changes smoothly when varying the value of v. The 
formalism is of importance in physical theories which postulate analyticity requirements and Lorentz 
invariance simultaneously (e.g., Regge and Lorentz pole theory). In this paper we construct explicit 
basis functions of the representation spaces. 

1. INTRODUCTION 
The representation theory of the SL(2, C) group 

is of great importance in physics, and a lot of work 
has been devoted to construct its representations 
explicitly. It is, however, surprising that attention has 
hardly been paid to constructing and investigating 
them in an explicitly "analytically continuable" form. 
We mean the following: The representations of the 
SL(2, C) group are usually given in an SU(2) , 
SU(1, 1), or E(2) basis, i.e., the representation space 
is given as a direct sum (integral) of subspaces invari­
ant with respect to the little groups of the 4-vectors 
(l, 0, 0, 0), (1,0,0, 1), and (0,0,0, 1), respectively. 
Physical theories, which postulate analyticity require­
ments together with Lorentz invariance, necessitate 
the construction of SL(2, C) representations over such 
spaces, which are split into subspaces invariant with 
respect to the little group of an appropriately chosen 
4·vector, e.g., p" = O(l + v), 0, 0, iO - v». Its 
length p! = v is kept a free parameter. Moreover, we 
want the representations to be analytic in this variable 
v in the sense that the split of the representation space 
into irreducible subspaces changes smoothly when 
we vary the value of this parameter. 

In this paper we will explicitly construct the basis 

states for such representations. We shall apply a 
standard procedure.1 This method consists first of 
choosing a subgroup which one wants to be diagonal 
in the basis to be constructed and second of deter­
mining the eigenfunctions of the Casimir operator of 
this subgroup. 

For this purpose, we must obviously specify such a 
subgroup of SL(2, C) which, depending on the value 
of a suitable parameter, becomes deformed from 
SU(2) through E(2} to SU(1, 1). Then one must 
determine the representation matrix elements of this 
group, which is the second point of the previous 
program above. These problems have already been 
treated2•3 but without embedding this group into 
SL(2, C). [The term "interpolating group (IG)" was 
introduced for this group3; we are going to use it in 
this paper as well.] 

After having constructed the basis with the above 
specified properties in the SL(2, C) representation 
space, we naturally examine the matrix elements of 
finite SL(2, C) transformations and the problem of 
the transformation coefficients between different basis 
sets.4 Here we give them only in integral forms, as the 
explicit calculations can be found in a separate paper.s 

In Sec. 2, we shall summarize the results of the 
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representation theory of the SL(2, C) group and the 
most important results of the theory of bilinear 
functionals6 constructed from SL(2, C) representation 
functions. In Sec. 3, we explicitly construct the 
basis functions which can be analytically continued 
in the above specified manner. In Sec. 4, we discuss 
methods of calculating matrix elements and transfor­
mation coefficients between any type of basis functions, 
and in Sec. 5, we apply these methods to finding the 
norm of the basis functions. 

2. SUMMARY OF SOME RESULTS OF 
SL(2, C) REPRESENTATIONS 

A. Basic Definitions 

From the general theory of6 SL(2, C), we know 
that it can be represented in the space of infinitely 
differentiable functions cp(z, i), where z = x + iy 
and the bar denotes complex conjugation; x and y 
are two real variables. [In the following we use the 
notation cp(z, i) = cp(z).] A general representation 
A (g) of an element g of SL(2, C) acts onto such 
functions as 

A(g)cp(z) = (fJz + ~)-io+"-l(fJz + ~)jo+"-lcp ((J.z + 1'), 
fJz + ~ 

where 
(2.1) 

g = (; ~), (J.~ - fJy = 1. (2.2) 

We allow any integer or half-integer value for jo and 
any complex one for a. For a given X = (jo, a) all 
the infinitely differentiable functions r/>(z) , satisfying 
Eq. (2.1), form an infinite-dimensional linear space Dx 
which is generally irreducible with respect to the 
transformation (2.1). Hence, a X = (jo, a) pair 
characterizes the representation as well. If a - jo is a 
nonnegative integer, Dx splits into two irreducible 
subspaces, a finite-dimensional and an infinite­
dimensional one. 

The A(g) operators are unitary and the space Dx is 
a Hilbert space when: 

(i) jo is integer or half-integer and a is imaginary­
principal series; 

(ii) jo = 0, a is real, 0 < lal < I-supplementary 
series; 

(iii) io = 0, a = I-trivial representation. 
In all the other cases the representations are 

nonunitary. 

B. The Bilinear Functional 

Our method for finding explicit basis functions 
(BF's in the following) is to solve a system of homo-

geneous partial differential equations, and it is up to 
us as to how we want to specify normalization 
factors. Since we are going to treat nonunitary repre­
sentations as well, we shall consider the so-called 
invariant bilinear functional (IBF in the following) 
B(cp,1jJ) instead of the Hermitian, positive-definite 
invariant scalar product. The latter exists only for 
the unitary representations. (We use the terminology 
of the quoted literature.6) Nevertheless, we shall 
comment on the differences between the normaliza­
tions given by the different methods in the case of the 
unitary representations. 

Let DXl and Dx. be two representation spaces with 
functions {cp} E DXl and {1jJ} E Dx •. B(cp, 1jJ) is defined 
as a functional as follows: 

(i) linear both in cp and 1jJ; 
(ii) continuous in cp and 1jJ in the DXl (B Dx. direct 

sum space; 
(iii) invariant with respect to SL(2, C) transforma­

tions. The last property means that 

B(ep,1jJ) = B(Tx1(g)ep, Tx.(g)1jJ), 

where g is an element of SL(2, C) and the operators 
TX1(g) and Tx.(g) are its representations over DXl and 
Dx., respectively. 

A suitable integral form of the IBF is 

B( ep, 1jJ) = ti J dz diepXl(Z)1jJX.(z), (2.3) 

where Xl = (jo, a) and X2 = - Xl. 
In the case of the unitary representations there 

exists a positive-definite invariant scalar product for 
cp, 1jJ E Dx' with X specified above. For the principal 
series it reads as 

(cp, 1jJ) = !i J dz dii{z)1jJ(z), (2.4) 

for the supplementary one as 

(cp, 1jJ) = (ti)2J dZ I di1 dZ2 di21z1 - z21-2a- 2 CP(Zl)1jJ(Z2)· 

(2.5) 

Some other question will be discussed in Sec. 4. 

3. CONSTRUCTION OF BF's IN D x 

A. The Construction of the Generators 

As usual, we introduce the six generators M t and 
N; of the SL(2, C), commuting as 

[M;, M i ] = - [Ni' N i ] = i€;j"Mk , 

[Mi , N i ] = i€iikNk· 

Their 2 X 2 matrix realization is, e.g., 

Mi = tai , N; = tia;, 

(3.1) 

(3.2) 
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where (1i stands for the well-known Pauli matrices 

(0 1) (0 -i) (1 0) 
(11 = 1 0' (12:!::: i 0 ' (13 = 0 -1 . 

(3.3) 

A realization of the generators Mi a!ld N; as opera­
tors on the spaces DJt can be found -by defining the 
one-parameter eleme~of SL(2, C) as exp (-iocMi ) or 
exp (-iocNi ) and by making use of Eqs. (2.1) and (3.2). 
Instead of writing down the results for M; and Ni , 

first we introduce some linear combinations of them 
more suitable for our purpose: 

Sl(V) = H(l + V)M2 + (1 - v)N1], 

S2(V) = 1[-(1 + v)M1 + (1 - V)N2], (3.4) 

Siv) = M 3 , 

where v is a real parameter. The v dependence of the 
S; operators will be suppressed. 

Now, one can find out that 

where 

and 

- 2iSl = cos rpSr - sin rpS"" 

-2iS2 = sin rpS, + cos rpS"" 

S .0 + . 
3 = -1- )0' 

orp 

-iN3 = r.£.- - (1 + 1, or 

Sr = (1 + vr2).£.- + 2vr(1 - (1), or 
S 1 - vr2 0 + 2' . 

'" = - IVr)o, 
r orp 

r = (x2 + l)! = (zi)!, 

rp = arctan y/x = In (z/z)!. 

B. The S;(v) Algebra 

(3.5a) 

(3.5b) 

(3.5c) 

(3.5d) 

. (3.6) 

We choose the basis functions in the Dx space as 
the solution of the differential equations 

(Si + S; + vS;)cP(z) = vj(j + l)cP(z), (3.7a) 

S3cP(Z) = mq,(z). (3.7b) 

To make this choice plausible, we give a short review 
of the properties of the operators S;. 2.3,7 

The Si operators form a closed subalgebra of the 
SL(2, C) algebra for any value of the parameter v: 

[Sl' S2] = ivS3, [S2, S3] = is!, [S3' Sl] = iS2· 
(3.8) 

This algebra is exactly the SU(2) algebra of the 
generators M; for v = 1 and isomorphic to it when 

v > 0. At v = 0, (3.8) appears to be the E(2) Lie 
algebra. Finally, for v < 0, (3.8) is isomorphic to the 
SU(l, 1) algebra; at v = -1 the SiC -1) generators 
are exactly the Nl> N 2 , and M3 ones and form an 
SU(1, 1) Lie algebra. Hence, the Si operators are the 
generators of the IG's. 

The operator C = si + S~ + vS; commutes with 
the elements of the Si algebra: 

[C,S;] =0, i=I,2,3; (3.9) 

it is the Casimir operator of the (3.8) algebra. It 
follows that, on a linear space which is irreducible 
under the IG transformations, the operator C acts 
like the unit operator, up to a fixed number, which is 
characteristic to the representation 

C = v}(} + 1)/. (3.10) 

(As for the precise statement about the irreducibility 
of the representation space when) is integer or half­
integer, see, e.g., Ref. 6.) The representations of the 
(3.8) algebra can easily be constructed when v -:F O. 
Some care is needed if we want to reach the point 
v = 0 continuously.3 We only mention here that for 
the nontrivial Hermitian representations of the E(2) 
algebra 

lim vj(j + 1) = t€2 (3.11) 
,,->0 

is a positive number. 

C. Finite IG Elements 

The operators given by the definition 

exp (-i~lS3) exp (-i~2S2) exp (-i~3S3) (3.12) 

form a subgroup of the SL(2, C) group, which changes 
its structure as v is varying. Concerning the different 
regions of v, similar remarks hold good as for the 
algebra of the Si' We call this subgroup an IG. 
Their elements are enumerated if the parameters run 
over the values 

0< < 2 {O ~ ~2 ~ 7TV-~ for v> 0 
- ~1' ~3 - 7T 0 ~ ~2 < 00 for v ~ 0 

(3.12') 
In the two-dimensional representation 

. (exp (-iit!) 0 ) 
exp (-I';lS3) = 0 exp (+!it

1
) , (3.13) 

exp (-it2S2) = 

(

COS (Hv)it2), 

i sin O(V)ft2)/(V)! 
;(v)! sin (Hv)l~2») 

(.l( )fl:) . (3.14) cos 2 v ~2 

The last representation is a nonunitary one, even in 
the v > 0, v -:F 1 region. We come back to this in the 
Appendix. 
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It is easy to see that the elements of the IG leav(l 
invariant the 4-vector 

PI' = 0(1 + v), 0, 0, t(1 - v», (3.15) 

the length of which is equal to p! = v. 

D. The Explicit Form of the BF's 

Now we turn to Eqs. (3.7). From the above it is 
clear that the BF's 4>(z) are representation functions 
of the IG's as well. Equation (3.7b) can be satisfied by 

4>(z) = exp [i(m - jo)rp]~mjo(r), (3.16) 

and (3.7a) is an equation only for ~mjo(r). The 
assumption 

~mio(r) = (1 + vr2)',-I4>mio(r) (3.17) 

puts Eq. (3.7a) in the form 

(
_ (1 + vr2)2 ~ _ (1 + vr2)2!!:.- + 1 + vr2 

4 dr2 4r dr 4r2 

x [em - jo)2 + vr2(m + jO)2]) 4>mio(r) 

= vj(j + 1)4>mi.(r). (3.18) 

Although this equation is familiar from the litera­
ture,I.3 we discuss its solutions with special attention 
to the fact that we are going to construct functions to 
represent 8L(2, C). 

We start with the simplest case v > 0. It is easy to 
verify that the non normalized solution of (3.18), 
regular at r = 0, is 

4>mi.(r) = r"(1 + vr2)p 

X F(-j - ~,j + 1 -~; 1 + IX; vr2jl + vr2). 

(3.19) 

This is valid for any complexj. We used the notations 
IX = 1m - jol, fl = -Wm + jol + 1m - jol)· In the 
following, it will always be assumed that m ~ jo ~ 0; 
then (3.19) looks like 

4>mJ.(r) = rm- i0(1 + vr2rm 

X F( -j + m,j + 1 + m; 1 + m - jo; vr2jl + vr2). 

(3.20) 

The case v < ° is more complicated. The complica­
tion appears because a solution of Eq. (3.18), similar 
to the 8U(2)-type function, is not one-valued over the 
entire complex z plane. Instead, one can find a 
solution, regular at r = 0, one-valued inside the circle 
1 + vr2 = 0, 

4>-;'iO(r) =r"(1 + vr2r i 

X F(-j - fl, -j + IX +~; 1 + IX; -vr2), 

(3.21) 

and another one, regular at r = 00, one-valued outside 
the circle 1 + vr2 = 0, 

cf;ni.(r) = !r-"(1 + 1 jvr2)-i 

X F(-j -~, -j + IX +~; 1 + IX; -1/vr2
). 

(3.22) 

The"!" in Eq. (3.22) is to call attention to the fact 
that, when calculating IX and fl, instead of m one 
should write -m into them. In Sec. 3F, we shall 
give 4>+ and 4>- for m ~ io ~ 0. 

To get BF's for all values of r, we add the one-valued 
part of (3.21) and (3.22): 

4>mio(r) = cp-;'io(r)6(1 + vr2) + cp;"io(r)()( -1 - vr2). 

(3.23) 

In the special case v = -1, this proposal coincides 
with that of Ref. 1. 

It is interesting to examine how the functions 
(3.19), (3.21), and (3.22) fit into our plan to construct 
BF's which change continuously their structure with 
v. Otherwise, can we get all the BF's, if we have a 
solution of Eq. (3.18) and if we continue it analytically 
in v at fixed r? 

If we start, e.g., with the BF (3.19) we have no 
problem in the v > ° region. Later we will show that 
the v = ° point can be reached analytically. Applying 
the standard formulas 

F(a, b; c; z) = (1 - z)-aF(a, c - b; c; zjz - 1), 

we see that we can arrive to (3.21), if 1 + vr2 > 0. 
Problems arise, as expected, only when 1 + vr2 < 0. 
In this case, the analytic continuation leads onto the 
cut of the function (3.19), where it is multivalued. 
Even restricting ourselves to one Riemann sheet, we 
have different functions on the upper and lower edge 
of the cut. Just as an observation, we mention that 
denoting, by CPmio(r, v), (3.19), continued analytically 
in v, one can obtain (3.22) as 

cp;"io(r) = CPmio(r, Ivl eirr
) =t= cpmio(r, Ivl e-irr

). (3.24) 

The minus sign is to be taken when io is integer; the 
plus sign when io is half-integer. 

It is interesting that the functions CP;'io have direct 
group-theoretical interpretation as well, which can be 
found out from the following observation: Any given 
point of the z plane can be reached from any other 
one by some IG transformation if v > 0: 

z' = (J.z + y/~z + 0, g = G !) E IG. 

When v < 0, the z plane is split into two disjoint 
regions with respect to the above mapping; the interior 
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and exterior of the circle 1 + vr2 = 0 are mapped 
onto themselves. Consequently, the cP+ and cP­
functions are separately suitable to represent the 
SU(l, 1) or isomorphic groups. This phenomenon 
of the SL(2, C) representation theory is well known, 
and it is termed that the SU(1, 1) representations 
appear with multiplicity two in the representations of 
SL(2, C). 

Finishing the discussion of the solutions of Eq. 
(3.18), we turn to the point v = 0. First we mention 
that, since F(a, b; c; z) is analytic inside the circle 
Izi = I, the form of (3.21) assures 

lim CPm;.(r, v) = lim cptniir, v). (3.25) 
1'-++0 v-+-o 

Many aspects of the reaching of the point v = 0 have 
already been discussed,3 and here we just mention 
that, if, together with lim v = 0, lim vj(j + I) = !€2, 

then Eq. (3.18) becomes 

( 
d2 +! ~ _ (m - jO)2 + i) cP . (r) = ° (3.26) 
dr2 r dr r2 mlo 

and its solutions are 

1, ..... 0 

x F(-j + m,j + 1 + m; 1 + m - jo; vr2/(1 + vr2» 

= r(t + m - jo)(2j€)m-iOJ m-i.(€r). (3.27) 

If €2 is real and positive, these functions yield infinite­
dimensional unitary representation of the subgroup 
E(2). For any other € y6 ° values we get nonunitary 
representations. If € = 0, we either have a one-dimen­
sional trivial unitary representation or finite-dimen­
sional nonunitary ones. These latter will be discussed 
in the Appendix. 

E. Anglelike Variables 

In the literature, instead of our rand vr2/(1 + vr2) 
variables, anglelike variables are more often used. 
Though in this paper we do not use them, we give the 
connection for the reader's convenience. 

The introduction of the anglelike variables is 
based on the mapping of the complex plane onto an 
ellipsoid (sphere) or a hyperboloid, respectively. A 
suitable mapping is the following: 

cp = 217 - cp', 
{

CP = cp', r = v- i tan (tviD), 

r = (-v)-i coth [H -v)iDJ 

if Ii < 0 and - vr2 > 1. 

(3.28) 

This mapping maps the plane onto a unit sphere if 
v = I, the region r < 1 is on the lower hemisphere, 
and the r > 1 is on the upper. As v decreases, the 
equator of the sphere grows as v-i , and the north 
and south pole remain fixed. At v = 0 the ellipsoid 
degenerates into two parallel planes which curve to a 
hyperboloid if v < 0. 

Inserting the anglelike variables into the solutions 
of Eq. (3.18), we very easily see that at the v = I, 
0, -1 points our results coincide with those known 
from the literature.1,9 

F. Summary of BF's 

Summarizing what we have obtained in this section, 
we collect the expressions for the BPs, m ~jo ~ 0: 
(a) For v > 0, 

CP;m.x.<z, v) = Nlei(m-io)q>rtn-i0(1 + vr2Y1-1-m 

X F( -j + m,j + 1 + m; 1 + m - jo; vr2/1 + vr2
). 

(3.29) 
(b) For v = 0, 

.J.. (z 0) = N ei(m-io)q>J (a) '/"'lm.x ' 2 m-io 
X (2j€)m-ior(1 + m - jo). (3.30) 

(c) For v < 0, 

CPim.x.<Z, v) = $;;'io(r)(J(l + vr2) 

+ $;;. i.(r)(J( -1 - vr2), (3.31) 

$;;',.(r) = Ntei(m-io)q>rm-i0(1 + vr2)-1-i 

X F(-j + m, -j - jo; 1 + m - jo; -vr2), 

(3.32) 

$;.;.(r) = N;ei(m-Jo)'I'r-m-J0(1 + 1/vr2)-i(1 + vr2)""-1 

X F(-j + m, -j + jo; 1 + m + jo; -1/vr2
). 

(3.33) 

The normalization factors will be calculated later. 
As we discussed in Sec. 3D, for CPJm.X<z, v) the form 

(3.31) is valid for any v. Formulas (3.29), (3.30), and 
(3.32) go into one another as v is varying at fixed r; 
the (J function standing before $- is equal to zero for 
v ~ o. 

4. FURTHER NOTES ON THE IBF's 

The subject of the further sections is the calculation 
of the IBF (2.3) with the BF's determined in the 
previous section. 

As we mentioned in Sec. 2A, the scalar product, 
i.e., positive-definite, Hermitian IBF, exists only in 
such Dx spaces, X = (jo, 0'), for which (a) 0' = -ii, 
(b)jo = 0, 0' real, ° < 10'1 < 1, and (c)jo = 0, 0' = 1. 
Since we want to consider other Dx spaces as well 
when calculating matrix elements, we have to use the 
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IBF specified in Eq. (2.3). If we change in it not only 
the signs of jo and (J but the sign of m as well and if 
instead of j we put - j - 1, then this B( P, 'IjJ) coincides 
with the scalar product of the principal' series. 

Consequently, if Pim,iz, v) and 'ljJkn,iZ, u) are 
two elements of the same D x and we want to calculate 
the matrix element of an operator A between them, 
we shall write: 

B(p, A'IjJ) = tiI dz dZP-i-1.-m._iz , V)A'ljJkn,iZ, 1/). 

(4.1) 

As special cases the following basic quantities are 
important: 

(i) The value of the normalization integral for the 
BPs, when both functions of Eq. (4.1) are taken at 
the same value of v, A = 1; 

(ii) the elements of the transformation matrix 
between normalized BF's (so-called overlap functions), 
when P and 'IjJ belong to the same Dr. space, but one 
of them is an eigenfunction of S2(V), and the other 
of S2(U), v =/= u [cf. Eq. (3.7)] and A = 1; 

(iii) matrix elements of SL(2, C) representations. 
Now both functions P and 'IjJ belong to the same 

value of v, A = T(g), and g E SL(2, C). The effect of 
T(g) onto a BF is given by Eq. (2.1). As special cases, 
the finite-boost representation matrix elements are 
the most important, i.e., when g = exp (iocN3). As a 
matter of fact, the boost matrix elements are special 
cases of (ii) too. 

In this paper we discuss in detail only the first 
question, i.e., the normalization factors, which 
remained unknown in the previous section. Now we 
prescribe them as follows: 

N = (r(j + 1 + 11. + (3)r(j + 1 - (3))! 
1 rU+l-oc-mnJ+l+m 

va 
X for v > 0, (4 2) 

(7T)!r(1 + 11.) • 

where 11. = 1m - jol and f3 = -Him - jol + 1m + jol), 

v = 0, 

(4.3) 

for v < 0, 1 + vr2 > 0, 

For convenience, we introduce the following notation 

for the normalized BF's: 

CPi.m.X<Z, v) = Ij, m; v) 

IE,m;) if v is zero, 

(

Ij, m;.v > 0) if v is positive, 

Ij, m; v < 0) = Ij, m; +) + Ij, m; -) 

if v is negative. 

The two terms in the case v < 0 are to be identified 
with the function inside (Ij, m; +» and outside 
(Ij, m; -» the circle 1 + vr2 = O. For the IBF (4.1) 
we are going to use the bracket symbol like 

(j, m; v I k, n; u) 

if the BF's in it are normalized. 

5. THE NORMALIZATION INTEGRALS 

For the SU(2)-like case, v > 0, we make use of 
the fact that our basis functions are essentially 
representation functions of the IG's. The application 
of the standard methods9 gives for integer or half­
integer values of j, Iml ~ j: 

(j, m; v > 0 I k, n; v> 0) = bikbmn/v(2j + 1). (5.1) 

We turn to the E(2) case, v = O. This gives a 
simple example to demonstrate that, in general, the 
IBF (4.1) must be considered as a generalized function. 
Obviously, we have 

(10, milO', n) = 2bmnfrdrJm-i.(£r)Jm-i.(E'r). (5.2) 

We do not want to restrict ourselves to unitary 
representations, and thus we let 10 and 10' be arbitrary 
complex numbers. The problem with the calculation 
of Eq. (5.2) is that the integral in it diverges. Never­
theless, it can be treated following the standard 
regularization technique of the generalized functions.10 

As a first step we define the Weber-Schaftlein-type 
integralll 

I p = f rP drJ m-io(a)J m-i.(£'r) (5.3) 

for Re p < 1 and for arbitrary complex values of £ 

and 10'. The above-mentioned regularization tech­
nique suggests defining the integral in Eq. (5.2) as the 
rhs of the formula [7.7.4.(29)] of Ref. 11, for complex 
values of a = 10 and b = £', after having performed 
the limit p - ]. Straightforward manipulations yield 

lim I p = 2(£/E,)m-iO[E'-l (lim (1 - E
2
/E'2)-P) 8(1101 _110'1) 

p-l p-l r«(1- p)/2) 

+ 10-2 (lim (1 - E'2/E2)-P) 8(110'1 - IEI)J. (5.4) 
p-l r((1 - p)/2) 
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This expression shows that the basis functions with 
different E and E' are orthogonal but for E = - E'. 
Actually, such E(2) representations are equivalent, 
and so we make the restriction Re E > O. Then, 
Eq. (5.4) gives, e.g., for real E and E', 

(E, m 1 E', n) = bmn(2jE)b(E - E'). (5.5) 

Lastly, we discuss the SU(l, I)-like case, v < O. 
First, we calculate (j, m; + 1 k, n; +). Here again 
the IBF is to be taken as a generalized function, 
since the integrals appearing diverge. We proceed 
similarly as above considering first a convergent 

integral 

fA = J dx xa(1 - xl-i-I+). 

X F( - j - {3 + A, - j + I'J. + (3; 1 + I'J. + A; x) 

X F(l + k + oc + {3, 1 + k - (3; 1 + oc; x) 

(5.6) 

in its domain of convergence; what we need is lim f;. 

as A -+ O. In this way, working in the spirit of the 
regularization technique,IO we get 

f(-l - j - k)r(1 + j + k) lim B(j - k, k - j + A) 

< 
. + 1 k +) b ;'-+0 ( l)l+a (57) 

J, m; , n; = mn f(j + 1 + I'J. + (3)r( - j - I'J. - (3)r(j + 1 + (3)r( - j - (3) - , . 

B(x, y) = f(x)r(y) . 
rex + y) 

Ifj = -t + ip and k = -t + iT, then 

(j, m; + I k, n; +) 
= b (_1)2fJ+2£ tan (7Tj + E) b( _ 7) (5.8) 

mn 2(2j + 1) p , 

{
o if m,jo are integer, 

E = t if m,jo are half-integer. 

If j and k are integer, then 

(j, m; + 1 k, n; +) 

= bmn/v(2j + 1) if j = k, 
{

o if j ~ k, 

j ~ min (lml, /jo/), 

mjo 2 O. (5.9) 

The results are the same for (j, m; -I k, n; -). 

APPENDIX 

In Sec. 3, we obtained the BF's, the elements of 
a D x space. If we omit the over-all (1 + vr2t-1 factor 
and arrange the elements in matrix form according to 
m and jo, we get the matrix representation of two­
parameter elements of the IG's, as we discussed in 
Sec. 3. 

If the normalization is that of Eq. (4.2)-(4.4), the 
representation is unitary for the appropriate values 
ofj, m, andjo. 

Let us change the normalization a bit by writing 

N~ = NIvt(m-io). (AI) 

As a consequence, an element of jo and m and one of 
-jo and -m will now differ from each other by a 
factor vm - io. This destroys the unitarity of the repre­
sentations, as one can see by direct calculation, e.g., 
from Eq. (3.14). [For this purpose the anglelike 
variables (3.28) are preferred.] Now the v -+ 0, 

vj(j + 1) -+ iE2, E:;6 0 limit does not give generally 
regular representation. Taking j finite, we see that 
the v -+ 0 limit yields 

lim 4>im,xCz, v) = ° if m - jo > ° 
v-+o 

= const X exp i(m - jo)gJrm- io. 

(A2) 
As can be proven by simple replacement, it is a 
solution of Eq. (3.26) with E = 0; so this is a non­
unitary representation of E(2). 

As an IG representation, the matrix of Eq. (A2) is a 
lower-triangle matrix. Had we written N~ = NIVio-m/2, 

the matrix would have been an upper-triangle one. 
An interesting feature is that, in this representation, 
one of the step operators, either S+ or S_ , is identically 
zero. It means that this basis is not a cyclic one. 

In this case it is possible to fix j, and, as v goes 
from 1 to -1, the representations change continu­
ously from SU(2) type to SU(l, 1) type via E(2), 
through nonunitary, nontrivial ones, without the 
appearance of any singularity [cf. Eq. (3.14)]. If we 
take unitary representations and want to get regular 
representations (and nontrivial ones) for any v, we 
have to allow j to go to infinity [cf. Eq. (3.27)]. 
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~ syste~atic treatment is presented .for the transformation matrix ele~ents between different type of 
basIs sets In the SL(2, C) representation space and for the boost matrix elements. The treatment is 
base~ on the theory of.invariant .bilinear functionals and makes use of the knowledge of explicit basis 
:u~ctlOns. New expressIOns are given for the SU(2) .... £(2) and SUO, I) <-+ £(2) overlap functions, and 
It IS shown that they can be considered as a Fourier transform of a function, which is also known. Some 
relations are proved between boost functions and transformation matrix elements. In the Appendix a 
new and relatively simple expression is deriv~d for the boost matrix elements d:;hi'(~) in SU(2) basis. 

1. INTRODUCTION 

Developments in the last few years in physics have 
made important expansions with respect to SL(2, C) 
representations, which include infinite-dimensional 
non unitary representations as well. In connection with 
these expansions, it has also become clear that the 
exploration of SL(2, C) representations in other 
bases than the conventional SU(2) basis may lead to 
much new information. On the other hand, these 
expansions raise a lot of mathematical questions. 
Among them, we mention that, in general, physical 
applications favor certain types of basis sets, de­
pending on the spacelike, timelike, or lightlike 
character of a 4-vector which plays a distinguished 
role in the physical problem. The squared length of 
this 4-vector used to be a fundamental variable, and 
its continuous change from positive to negative values 
is usually assumed. It is a natural desire to relax the 
description of the SL(2, C) representations in such a 
way that the change of this variable be followed by the 
change of the character of the basis system chosen in 
the representation space. A detailed survey of basis 
set, in which the little group of the 4-vector 

PI' = [~(l + v), 0, 0, HI - v)] 

is diagonal and depends explicitly on v, has been 
given in another paper.1 (Hereafter referred to as I). 
The present paper is intended to make use of the 
knowledge of these basis functions for investigating 
further problems. 

A question arising from the use of different basis 
systems is the calculation of the transformation 
matrix elements between them. This problem has 
already been studied by many authors2- 6 and most 
completely in Ref. 7. The method of induced repre­
sentations is extensively used in most of these papers. 
In possession of the basis functions, we see that these 
matrix elements appear in a very natural manner. 

Nevertheless, our results may be preferred to those of 
Ref. 7 due to the following reasons: 

(a) In many cases our formulas are simpler and 
more suitable for further calculations. 

(b) The calculation of some auxiliary quantities is, 
to a certain extent, doubtful in the paper hy Delbourgo 
et al.7 These quantities, denoted by (A,jo Ijo, a} are 
calculated in Ref. 7 for finite-dimensional representa­
tions and then extended to the unitary representations. 
The very exceptional position of the finite-dimen­
sional representations in the theory of the SL(2, C) 
representations makes questionable such a procedure. 
In our approach these quantities do not appear at all. 
A further nice feature of our method is that it gives, 
with a coherent normalization, all the transformation 
matrix elements and boost functions. 

Another problem one meets is connected with the 
appearance of nonunitary representations. Physicists 
generally favor the use of the so-called bra-ket 
technique, and it makes necessary special care when 
the basis vectors are not elements of a Hilbert space. 
In this case, the usual scalar product is to be replaced 
by the more general notion of bilinear functional. As 
a matter of fact, the aim of this paper is the investiga­
tion of bilinear functionals, through use of the basis 
functions explicitly constructed in I. 

In Sec. 2 the main points of Paper I are reviewed. 
In Secs. 3 and 4, bilinear functionals are calcu­
lated: in Sec. 3, the ones which are specifically called 
"overlap functions" and, in Sec. 4, the ones which are 
known as boost functions. In the Appendix a differ­
ential equation method is outlined, which gives useful 
ideas to the calculation of boost functions. 

2. SUMMARY OF THE BASIS SETS 

In Paper I the construction of explicit basis func­
tions was studied; here we give a short review of the 
results. 

853 
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As usual, we considered the space Dx' X = (jo, O'), 
of the infinitely differentiable functions 1>(z, 2) [ih the 
following, 1>(z)] of one complex variable z = x + iy 
and 2 = x - iy. The elements g of SL(2, C) are 
represented by the operators Tx(g) acting on the 
functions 1>(z) as follows: 

Tx(g)1>(z) = ({Jz + 6)-C-;o+t1-1(P2 + J)1o+ t1- 11>(;: : ~), 

(2.1) 

where (~~), 1Xt5 - (Jy = 1, is the 2 X 2 matrix 
representation of g. On the other hand, we introduced 
the one-parameter elements of SL(2, C) in the form 
e-irzMk and e-irzNk , where Mk and Nk, k = 1,2,3, are 
the six generators of SL(2, C) commuting like 

[M;, M;J = - [Ni , N;) = i£ijkMk' 

[M;, N;J = i£iikNk' (2.2) 

Then, choosing the generators to be Mk = to'k and 
Nk = iiO'k in the 2 X 2 matrix representation, where 
O'k are the Pauli matrices, we find it easy to get Mk 
and Nk as differential operators acting on the functions 
1>(z). Namely, one gets 

M l 1>(z) = ~(22 - 1) ~ - (Z2 - 1).! 
2 02 OZ 

+ (O' - jo - l)z - (O' + jo -1)2)1>(Z), 

M21>(z) = !..(Z2 + 1) 0_ + (Z2 + 1) ~ 
2 OZ OZ 

- (O' - jo - l)z - (O' + jo - l)z)1>(Z), 

M31>(z) = (z ~ - 2 0_ + jo)1>(Z), oz OZ 

N l 1>(z) = !..(l - Z2) 0_ + (1 _ Z2) ~ 
2 OZ OZ 

(2.3) 

+ (O' - jo - l)z + (O' + jo - 1)2) 1>(z), 

N2</>{z) = H(1 + Z2) :2 - (1 + Z2)!; 

+ (O' - jo - l)z - (O' + jo - 1)2)1>(Z), 

N31>(z) = i (z ~ + 2 0_ - O' + 1) 1>(z). oz oz 
This realization of the generators serves as ground­
work when we construct basis functions in the Dx 
spaces. The Casimir operators M2 - N2 and MN, as 

calculated from Eqs. (2.3), appear to be 

(M2 _ N2)1>(z) = (0'2 + j~ - l)1>(z), 

MN1>(z) = - ijoO'1>(z) (2.4) 

for all the elements 1>(z) of a given space Dx' where 
jo is an integer or half-integer and O' is an arbitrary 
complex number. As is known, four independent 
operators, made from the generators Mk and Nk , can 
be diagonalized in a basis set, which one is going to 
use for representing SL(2, C). In I, the two operators 
beyond M2 - N2 and MN were chosen to be 
C = S~(v) + Si(v) + vS;(v) and S3(V), where 

Sl(V) = HI + V)M2 + HI - V)Nl' 

Sz(v) = -!(I + v)M1 + HI - V)N2' (2.5) 

Sa(v) = M a, 

and v is an arbitrary real parameter. The Si(V) 
operators can be used for generating a subgroup of 
SL(2, C) which, in the four-dimensional representa 
tion.leaves invariant the 4-vector Pp. = [l(l + v), 
0,0,1(1 - v)), p! = v. This group is 

(a) the SU(2) group for v = 1 and isomorphic to 
SU(2) for v > 0, 

(b) the E(2) group for v = 0, 
(c) the SU(l, 1) group for v = -1 and isomorphic 

to SU(I, I) for v < 0. Due to these properties in 
Paper I, this group was called the "interpolating 
group" (IG). 

The basis vectors in the space Dx can be determined 
as the eigenfunctions of the operators C and S3( v): 

C1>(z) = vj(j + l)1>(z), (2.6a) 

S31>{Z) = m1>(z). (2.6b) 

When v = 0, a suitable definition for the eigenvalue 
of C is 

lim vj(j + 1) = t£2, (2.7) 
v ... o 

In general, we are not going to restrict ourselves to 
unitary representations and allow arbitrary complex 
values for j and E. An appropriate solution of Eqs. 
(2.6) is (see Paper I) 

q,~m(z, v) 

= 1>~!,;)(z, v) + 1>~!;;)(z, v) 
= ei(m-io)'P( I + vr2Y7-1 

X {6(l + vr2)Nl[(v)tr)rz(1 + vr2)-i 

X F(-] - (J, -j + IX + (J; 1 + IX; _vr2
) 

+ B( -1 - vr2)N2[(v)trr""(1 + l/vr2)-i 

X F(-j - p, -j + IX' + (J; 1 + IX; -1/vr2
)}. 

(2.8) 
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In these formulas, polar variables r = \z\ and g; = 
arg z and the following notations are introduced: 

oc = 1m - jo\, oc' = \m + io\, f3 = -Hoc + oc'). 

The normalization factors are prescribed as follows: 

_ 1 1 (r(1 + j - (3)r(1 + j + oc + (3»)1 
Nl = 7Tt r(1 + oc) r(1 + j + (3)r(1 + j - oc - (3) . 

N2 can be obtained from Nl by changing oc to oc'. For 
any real value of v, the functions (2.8) can be used as 
basis states in the representation space D x' Specially, 
they are the functions of the E(2) basis for v = 0, if 
we take limv--+o viU + 1) = 11:2 : 

lim 4>'X, (z v) = 1- ei(m-io)tp J (I:r) (2.9) 
v .... o 3m' 7Tt «' 

In the rest of the paper we shall always take m 2 
io 2 o. 

3. BILINEAR FUNCTIONALS 

It is well known that the representation spaces D x 
are generally not Hilbert spaces and an invariant, 
positive-definite scalar product does not always exist 
between the elements of a space D x . It exists only when: 

(i) io is integer or half-integer and a is pure 
imaginary (principal series), 

(ii) }o = 0, a is real, and 0 < lal < 1 (supple­
mentary series), 

(iii) io = 0, a = 1 (trivial representation). 
In the other cases the substitute for the scalar product 
is the so-called invariant bilinear functional. A 
beautiful treatment of the theory of bilinear func­
tionals, invariant under SL(2, C) transformations, 
can be found in Ref. 8, and a short summary was 
given in I. 

In Paper I we started with the calculation of the 
bilinear functional 

B(g;, 'IjJ) = !iJ dz dzg;(z)'IjJ(z), (3.1) 

where g;(z) and 'IjJ(z) are elements of the spaces Dx 
andD_x,respectively,x = (io,a), -x = (-jo, -a). 
Once the basis functions in the Dx spaces are explicitly 
known, we are able to calculate B( cp, 'IjJ) in many 
concrete cases. 

We introduce, as we did also in I, the following 
notations: 

(i) The ket symbols ij, m; v) or II:, m> will be used 
for the normalized basis functions in a space Dx with 
given X = (io, a). 

(ii) The bracket symbol <1, m; v 1/, m'; v') will be 
used for 

(3.2) 

It was shown in I that (i, m; v Ii', m'; v), as defined 
by (3.2), coincides with the usual scalar product for 
the unitary principal series. 

In the subsequent part of the paper we are going 
to calculate the integral (3.2) in such cases, when 
v :;t. v'. Specially, in the remainder of this section the 
cases v' = 0, v:;t. 0, and v' > 0, v < 0 will be 
considered. 

A. The 8U(2) ~ E(2) Overlap Functions 
(€, m Ij, m;v) 

For positive values of v the second term is identi­
cally zero in the expression (2.8) of the basis function 
Ii, m; v). After expanding into power series in the 
variable 

x = vr2J(1 + vr2), 

the hypergeometric function of the first term, and 
after using the binomial formula for 

we integrate term by term to obtain 

(1:, m /j, m'; v) 

2 dmm' 

v r( m - j)r( m + j + 1) 

x (r(1 + j + m)r(1 + j - jo»)t 
r(1 + j - m)r(1 + j + jo) 

00 n (-1)'" 

x n~o",~ k! (n - k)! 

x _r---.:('-m_---"-.j---.:+---'n )_r-'-..( m--..:.+--.::J_· +-,---I_+~n),--­
r(1 - jo + m + n)r(1 - a + m + k) 

( 
I: )k+m-a ( I: ) 

x 2vi K a- io- k vi . (3.3) 

This formula is valid for arbitrary complex i and 1:, 
I: :;t. 0, with the restriction that the summation for 
k must first be performed. In the case when j - m is 
positive integer [unitary SU(2) representations], the 
infinite sum with respect to n terminates, and (3.3) 
can be simplified. Indeed, for} - m a positive integer, 
the hypergeometric function in Ij, m; v) can be 
transformed in the following manner: 

(1 + vr2)-i+mp(_j + m, -j - jo;l + m - jo; -vr2) 

= (_l)i-m r(1 + m - jo)r(1 + j + jo) 
r(1 + m + jo)r(1 +'j - jo) 

xP(-i+m,j+m+l;l+m+io; 1 2)' 
1 + vr 
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The integration now yields: 

f(1 +j + m + k) (E )k+m-a (E) 
X r(1 + j _ m - k)r(1 + jo + m + k)r(1 - a + m + k) 2vt Ka- io- k vt . (3.4) 

This formula was first derived in Ref. 6 by a different method. 

B. The 8U(1, 1) ~ E(2) Overlap Functions 
(~, m Ij, m; ±) 

In this case there are two functions to be calculated 
correspondingly to the two terms in (2.8). We shall 
use for them the notations (E, m Ij, m'; +) and 
(E, m Ij, m'; -). We start with (E, m Ij, m'; +). By 
similar trick as in the SU(2) case it is easy to get 

(E, m Ii, m'; +> 
= _ ! eti"(m-io) bmm, 

v r( - j + m )r(j + I + m) 

x (r(1 + j + m)r(1 + j - jo»)t 
r(t + j - m)r(1 + j + jo) 

x ~ I ---'-(_---..:.I)_k -
n=O k=O k! (n - k)! 

r(-j + m + n)r(-j - jo + n)r(a- j + k) x ~~~--~~~~~~~~~--~~ 
rem - jo + I + n) 

X (2(~V)S-k-a Ja-iO-Hm+k(_EV)t). (3.5) 

It is worth saying that an alternative form of 
(E, m Ij, m'; +) could be obtained also by writing 
the SU(1, I) representation function in ij, m; +) as 
a linear combination of second kind functions. This 
form would be less similar to (3.3) than (3.5) is, but 
simpler to such an extent that it does not contain a 
summation corresponding to the one over k in 
(3.3) and (3.5). The form (3.5) of the function 
(E, m Ij, m'; +) does not appear to have been given 
before, and, together with the corresponding formulas 
in the 8U(2) case, may be preferred to the expressions 
of Ref. 7, because of the appearance of Bessel func­
tions instead of Meijer functions. 

Unfortunately, we have not been lucky enough to 
find a similar representation for the functions 
(E, m Ij, m'; -). After expanding into power series 
the hypergeometric function in Jj, m'; -) and 

integrating, we obtained: 

(E, m Ii, m'; -) 

= _ ! e-ti"(m+io)J: r(O' - j) 
U mm' 

V r(-j + m)r(-j + jo) 

x (r(t + j + m)r(1 + j + jo»)t 
r(1 + j - m)r(1 + j - jo) 

x f rC- j + m + n)r(-j +jo + n) 
n=O n!r(m+jo+l+n) 

x C( ~V)tr2Hm+i0+2n 

x G~~( - ~: I j _ 0', j - jo ~ n, j - m - n)' 
(3.6) 

C. The 8U(2) ~ 8U(1, 1) Overlap Functions 

These functions appear as special case of (3.2), 
when the signs of v and v' are different. It is obvious 
that, putting the appropriate functions into the 
integral (3.2), we could reproduce the formulas first 
derived by the authors of Ref. 2 in the special case 
v = I and v' = -1. We just mention that it is easy 
to get alternative formulas by making use of the fact 
(see Paper I) that all the E(2) basis functions, IE, m), 
with real, positive E, form a complete orthogonal 
system, and we may write 

(j, m; v Ii', m; v') 

= l<XJ!E dE(j, m; v I E, m)(E, m Ii', m; v'). (3.7) 

A term-by-term integration, applying the functions 
(3.3), (3.5), and (3.6), yields series in terms of hyper­
geometric functions, which are not remarkably 
simpler than the ones in Ref. 2. 

We finish this section with a remark which may 
prove to be advantageous for many purposes and 
which, in our opinion, is interesting even in itself. 
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This remark is based on the following integral representation of the Bessel functions: r i TECOS 
'" sinn- 2 !p dip = 7Ttr[t(n - l)](lre)-tnH J!n_l(re). (3.8) 

With this formula, a short calculation gives 

. 1 1 (r(1 + j + m)r(1 + j - jo»)!(v!e)m-iO 
(e m I] m' v) = - -

, " 7T r(1 - jo + m) r(1 + j - m)r(1 + j + jo) 27T 

X I(1 + V IXI2)'7-l-mF( -j + m,j + m + 1; m -jo + 1; 1 :1:\~12)ei(""8)dX, (3.9) 

where x = (Xl"" ,Xk ), k = 2(m - jo + 1), IxI2 = 
xi + ... + x~ = r2, S = (Sl' .•• ,Sk)' SI = e, and 
S2 = ... = Sk = 0. Obviously, (3.9) is a Fourier 
transform in a 2(m - jo + I)-dimensional space. 

This remark makes us able to make a very simple 
rederivation of the normalization integral (e, m I e', m). 
First we notice that, when lim vj(j + 1) = ie'2 as 
v ---+ 0, we have 

lim (e, m Ii, m; v) = (e, m Ie', m). 
v-->o 

Let us now consider, for simplicity, real e and e' 

values, and calculate the following quantity: 

I = ["'ie' de' (lim (e; m I j, m; V»)!p( e'), 
Jo v-+o 

where !p( e) is an infinitely differentiable function with 
finite support. It is straightforward to get the following 
by making use of (3.8) and (3.9): 

I = ..L ["'de' ( [00 eH<-E')Y dY) !p( e'), 
27T Jo Loo 

that is, 

(e, m Ie', m) = 2e-I b(e - e'). 

It goes without saying that similar remarks hold good 
also for (e, m \j, m; +) and (e, m Ij, m; -). 

(j, m; 11 j', m'; v) = bm",.( -It-i r(m - jo + 1) 

4. THE BOOST MATRIX ELEMENTS 

The last type of bilinear functionals we want to 
deal with involves v and v' with the same sign. As a 
by-product we shall obtain also the boost representa­
tion matrix elements 

d:~j'(~) = (j, m; ±11 e-isN3 Ij', m; ±l). 

Namely, the following relation is valid: 

d~'::j'(~) = eJ·s(j, m; ±l/ j', m; ±v-l
), (4.1) 

where the notation v = exp (-2~) is introduced. 
This statement can be proved simply by referring to 
the formula (2.1). Let g be the boost transformation 
exp (-i;Na). Then we have 

T(e-iSN3)cfo(z) = e30S cfo(e2Sz), 

and from this the validity of (4.1) is obvious. 
The calculation of (j, 1h; v IF, m'; v') can be per­

formed either by making use of Eq. (3.7) or by the 
method applied in Refs. 2 and 7. To save space, we 
write down explicit result only in the special case 
when v = 1, v' > 0, and bothj - m andj' - mare 
nonnegative integers. For the calculation, Eq. (3.7) 
was used: 

(
r(1 + j - m)r(1 + j + jo)r(1 + j' - m)r(1 + j' + jo»)t i-m i'-m (_l)k+k' 

X r(1 + j + m)r(1 + j - jo)r(1 + j' + m)r(1 + j' - jo) k~O k~O k! k'! 

X _____ r~(I_+~j~+~m_+~k)~r~(I~+~j_'+~m~+_k~')~r~(I_+~jo~+~m~+_k~+~k~') __ __ 
1'(1 + j - m - k)1'(1 + j' - m - k')1'(1 + jo + m + k)r(1 + jo + m + k') 

-I-!<m-ia) 
X v F(m - jo + 1, m - (J + 1 + k'; 2m + 2 + k + k'; 1 _ V-I). 

r(2m + k + k' + 2) 

It is worth mentioning that (4.2) can be simplified by 
sophisticated partial integrations. These partial inte­
grations lead to an expression with many less terms to 
sum. For this we refer the reader to the Appendix. 

(4.2) 

Finally, we call attention to a consequence of (4.1): 
If ~ ---+ OCJ together with e-2~'(j' + 1) ---+ te2, then 

lim dJ::.j,(;)e- io ; = (j, m; ± 1 I e, m). 
s~oo 
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APPENDIX 

As we have seen, the bilinear functional approach 
presented in this paper for the calculation of trans­
formation matrix elements and boost functions is 
extremely powerful. Nevertheless, it leaves undis­
covered many properties of these functions, which can 
be used for simplifying the integrals to be calculated. 
The aim of this appendix is to outline a special differ­
ential equation method, which makes us able to trans­
form the expression (4.2) into a much simpler form. 
This simplification would hardly be found out 
without the application of the results cO'!ling from 
this differential equation approach. The method first 
appeared in Ref. 5, where it was introduced in a 
different and less direct manner. 

The construction is as follows. First of all, we 
observe the symmetric role of the variables e and r in 
the functions of the E(2) basis. Then, for practical 
reasons, we introduce the following operators: 

E± = =fi(Ml + iM2) + (Nl ± iN2), 

F± = ±i(Ml + iM2) + (Nl ± iN2). 

Applying the differential operator realization (2.3) of 
the generators, the explicit form 

Ie m) = _1_ eHm-io)ipJ . (er) , ! m-}O 

( 7T) 

of the functions of the E(2) basis, and the differentia­
tion formulas of the Bessel functions, one gets 

E± Ie, m) = =fie iE, m ± 1), (Al) 

( 
a2 a 

F± Ie, m) = =fi e 2 + (-2(j ± 2m + 3)-oe oe 
=f (m - jo ± 1)(2: =f jo =f m - 1)) 

x Ie, m ± 1), (A2) 

Ma iE, m) = m Ie, m), (A3) 

Nsle, m) = i(l - (j + e :J Ie, m). (A4) 

This representation of the SL(2, C) generators 
enables us to write down a differential equation for 
the overlap functions (e, m \j, m; v). One must only 
express the Casimir operator C, defined in Sec. 2, as 
a differential operator in the variable e: 

[HE+E_ - vF+E_ - vE+L + v2F+F_) + vM; - vMs] 

x (e, m Ii, m; v) = vj(j + l)(e, m Ij, m; v). (AS) 

Unfortunately, this is a very complicated fourth­
order differential equation. Nevertheless, it can be 
verified by direct calculation that the function 

(e, m \j, m; v), given as a Fourier transform by Eq. 
(3.9), is a solution of (AS). 

Really useful information comes from the repre­
sentation (AI)-(A4) in the case of SU(2)-like bases, 
when the representation of the IG is unitary. In this 
case Eq. (AS) can be replaced by a recursion 
relation. 

Before going into the details, we introduce a new 
normalization, which makes the calculations in the 
variable e much easier. We redefine the normalization 
factor Nl , given in Sec. 2, as follows: 

N{ = [v-a(r(1 - (j + j)/r(1 + (j + j»]l Nl . (A6) 

Correspondingly, we take, in the E(2) case, 

4>~m(z) = 7T-leilm-io)'P(!e)-a Jm_ia(er). (A7) 

The use of this normalization is that the realization 
(A2) of the operators F± simplifies. Using from now 
on the notation IE, m) for the function (A7) and 
Ij, m; v) for the SU(2)-like basis functions normalized 
by (A6), we have 

F±IE, m) = =fi E- + (3 ± 2m)-( 
02 a 
oe2 OE 

+ (m ± 1)2 ~ (jo =f (j)2) IE, m ± 1), 

(A8) 

while the form of E± and Ms remains unchanged. In 
the following we shall take v = 1 and denote the 
functions of the SU(2) basis by Ij, m). Introducing the 
raising operator M+ = Ml + iM2' we see that 

M+ Ij,j) = O. 

On the other hand, the following relation is true: 

M+ = ti(E+ - F+), 

which enables us to write 

(E~ + (1 _ 2j)E... +r - (jo - (j)2 _ E) 
OE2 OE E 

X (e, j I j, j) = O. (A9) 

Maneuvering similarly also with the lowering operator 
M_ = Ml - iM2' we can derive the following rela­
tion for the functions (e,j jj,j) and (E, m jj, m) 
(see Ref. S): 

< I.) - ( l)J-m( (j + m)! )t 
E, m ], m - --

2 (j - m)! (2j)! 

x E-mBJ;';(e)ei(e, j I j, j), (A10) 

where Bt:"(e) stands for the {j - m)th power of the 
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Bessel operator 

B. (e) = ~ ! !!. _ 00 + a)2 _ 1. (All) 
,o+a d 2 + d 2 e e e e 

The differential equation system (AlO) , (A9) was 

first solved in Ref. 6 by a direct method. The same 
result is reproduced by the bilinear functional method 
in Sec. 3 of the present paper. For the reader's con­
venience we write down the counterpart of (3.4) 
corresponding to the normalization introduced by 
(A6) and (A7): 

(e mi' m) = (_1)i-m2- m (r(1 + j - m)r(1 + j - jo)r(1 + j - a»)* 
, j, ro + j + m)r(1 + j + jo)r(1 + j + a) 

X i"}:,m(_ !)k (j + m + k)! 1 ek+mKio_a+k(e). (A 12) 
k=O 2 k! (j - m - k)! r(1 + jo + m + k)r(1 - a + m + k) 

Now we tum to our main purpose, the calculation of the boost function d;~,(~) in SU(2) basis. We 
calculate the integral 

d~~i'(~) = es£<Xlle de(j, m Ie', m)(e, m !i', m), e' = ees, (A13) 

and proceed in the following manner: For definiteness, we assume j 5;.j'. For (j, m \ e', m) we put into 
(A13) the expression (A12), and for (e, m If, m) we use (AIO). Then by partial integration we shift the 
Bessel operators from (e, m \j', m) to (j, m \ e, m). This procedure leads to a sum the terms of which 
include a part of the type B~(y)[yPKiy)], where c, p, and q are arbitrary complex numbers and k is 
a positive integer. It can be proved, by induction with respect to k and by using the relation 

that the following relation is true: 

B~(y)[yPKa<y)] = 4kr[1 + i(p - q + c)]r[l + t(p - q - c)] 

xi (_ !\ k! r(1 + p - k + r) 
r=O 2/ r! (k - r)! r[l + i(p - q + c) - (k - r)]I'[l + !(p - q - c) - (k - r)] 

x 1 p+r-2kK 
r(1 + p - k) Y o-r(Y)· 

finally we get this result for d:~i'W, 

d~oa . .(~) = (_l)i'-i(r(1 + j - m)r(1 + j + jo)r(1 + j + a»)* 
,m, r(1 + j + m)r(l + j - jo)r(1 + j - a) 

X (r(1 + j' + m)r(1 + j' - jo)r(1 + j' - a»)* 
r(1 + j' - m)r(1 + j' + jo)r(1 + j' + a) 

x''im !(_l)k+n r(1 + j' - m)r(1 + j + m + k) 
k~On=O r(n + 1)r(1 +j' - m - n)r(1 +j - m - n)r(1 + k - n) 

x=-__ r~(_l~+~j_'~+~j~'o~+_k __ -_n~)_r~(l_+~j'_+~G_+~k_-~n~) __ _ 
r(1 + jo + m + k)r(1 + a + m + k)r(2 + 2j' + k - n) 

X (x-*)io- a+m+2n+l(x-1 - l)i'-m-np(1 - jo + j', 1 + j' - a; 2 + 2j' + k - n; 1 - x), (A14) 

where x = exp (-2~). For practical purposes, it is useful to write the expression (A14) in another form which 
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utilizes the fact that the hypergeometric function is of a special degenerate type: 

d~oa.,(n = (-1)1'-1 r(1 - jo + a)r(1 + jo - a) 
3m3 • + Jo a 

(
r(1 + j - m)r(1 + j + io)r(1 + j' + m)r(1 + j' - jo»)~ 

X r(1 + j + m)r(1 + j - io)r(1 + j' - m)r(1 + j' + jo) 

X [r(1 + j - a)r(1 + j + a)r(1 + j' - a)r(1 + j' + a)]-~ 
X lim ±<_1)k+n . r(1 + j' - m)r(l + j + m + k) 

k=O n=O r(n + l)r(1 + j' - m - n)r(1 + j - m - k)r(1 + k - n) 

X r(1 + j' + jo + k - n)r(1 + a + j) [x~(m-io+a+1)(l _ x)io-m-l-np(-;-i?+a;-io-a-k+n) (1 + X) 
r(1 + jo + m + k)r(1 + a + m + k) 3 +to+k-n 1 - x 

- x!(m+lo-a+1)(1 - xrio-m-l-kp;!~~;;jo+a+k-n) G ~ :) J. 
The p~~.P)(y) symbols stand here for Jacobi polynomials. A similar formula has been known only in the 
special case m = j. A remarkable feature of these formulas is that the number of terms in the sum depends 
only on the lesser of j and j'. 

1 K.Szego and K. T6th, J. Maths, Phys. 12, 846 (1971). 
2 A. Sciarrino and M. Toller, J. Math. Phys. 8, 1252 (1967). 
3 S. Strom, Arkiv Fysik 34,215 (1967). 
4 M. A. Liberman and A. A. Makarov, Dubna Preprint P2-4067, 1968 (in Russian). 
5 S. J. Chang and L. O'Raifeartaigh, J. Math. Phys. 10, 21 (1969). 
6 K. T6th, ICTP, Internal Report No. IC/69/125, 1969. 
7 R. Delbourgo et al., Nuovo Cimento 52A, 1254 (1967). 
8 I. M. Gel'fand et al., Generalized Functions (Academic, New York, 1968), Vol. 5. 
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A characterization of the weak limits of states is given, leading to an extension of a theorem of 
Gudder and the verification of a conjecture by Mackey 

In this paper we are concerned with the weak closure 
of the set of all states of a logic. Gudder has proved a 
related theorem1 under the hypothesis that the logic is 
directed, i.e., that any two partitions of the unit 
element on the logic into pairwise disjoint elements 
admit a common refinement. This, however, implies 
that the logic is Boolean, and so the range of appli­
cability of this theorem is reduced. We shall establish 
here under more general conditions that the states are 
dense in the set of all expectation functionals on the 
bounded observables, so that we shall obtain as a 
corollary the conclusion of Gudder's theorem. 

We shall be working within Mackey's system. Our 
logic!: is a set with a partial order S, smallest and 
largest elements 0 and I respectively, and an involu­
tion Q ---+ Q' such that p s Q iff Q' S pi, P V p' = I, 
P /\ pi = 0, 0 ' = I, and I' = O. Further, if P S Q, 

we assume the existence of a unique R S P' such that 
Q = P V R, and finally assume that any sequence of 
pairwise disjoint Qj (i.e., such that Qi s Q£ for i ::;t:. k) 
admits a least upper bound! Qj. An observable is a 
a-homomorphism A of the Borel sets in the reals to C, 
and for any Borel function I the observable IA is the 
map A 01-1• The spectrum aA of A is the complement 
of the largest open set whose characteristic function 
acting on A produces O. The elements of C are natur­
ally identified to the idempotent observables. A state 
is a countably additive (on disjoint elements) prob­
ability measure on the logic. We shall define a quasi­
state as a finitely additive (on disjoint elements) 
probability measure on L Clearly the weak limit of 
any net of states will be a quasistate. We shall write 
.A(, for the set of all states on C, and assume the logic 
to be full. 
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utilizes the fact that the hypergeometric function is of a special degenerate type: 

d~oa.,(n = (-1)1'-1 r(1 - jo + a)r(1 + jo - a) 
3m3 • + Jo a 

(
r(1 + j - m)r(1 + j + io)r(1 + j' + m)r(1 + j' - jo»)~ 

X r(1 + j + m)r(1 + j - io)r(1 + j' - m)r(1 + j' + jo) 

X [r(1 + j - a)r(1 + j + a)r(1 + j' - a)r(1 + j' + a)]-~ 
X lim ±<_1)k+n . r(1 + j' - m)r(l + j + m + k) 

k=O n=O r(n + l)r(1 + j' - m - n)r(1 + j - m - k)r(1 + k - n) 

X r(1 + j' + jo + k - n)r(1 + a + j) [x~(m-io+a+1)(l _ x)io-m-l-np(-;-i?+a;-io-a-k+n) (1 + X) 
r(1 + jo + m + k)r(1 + a + m + k) 3 +to+k-n 1 - x 

- x!(m+lo-a+1)(1 - xrio-m-l-kp;!~~;;jo+a+k-n) G ~ :) J. 
The p~~.P)(y) symbols stand here for Jacobi polynomials. A similar formula has been known only in the 
special case m = j. A remarkable feature of these formulas is that the number of terms in the sum depends 
only on the lesser of j and j'. 
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In this paper we are concerned with the weak closure 
of the set of all states of a logic. Gudder has proved a 
related theorem1 under the hypothesis that the logic is 
directed, i.e., that any two partitions of the unit 
element on the logic into pairwise disjoint elements 
admit a common refinement. This, however, implies 
that the logic is Boolean, and so the range of appli­
cability of this theorem is reduced. We shall establish 
here under more general conditions that the states are 
dense in the set of all expectation functionals on the 
bounded observables, so that we shall obtain as a 
corollary the conclusion of Gudder's theorem. 

We shall be working within Mackey's system. Our 
logic!: is a set with a partial order S, smallest and 
largest elements 0 and I respectively, and an involu­
tion Q ---+ Q' such that p s Q iff Q' S pi, P V p' = I, 
P /\ pi = 0, 0 ' = I, and I' = O. Further, if P S Q, 

we assume the existence of a unique R S P' such that 
Q = P V R, and finally assume that any sequence of 
pairwise disjoint Qj (i.e., such that Qi s Q£ for i ::;t:. k) 
admits a least upper bound! Qj. An observable is a 
a-homomorphism A of the Borel sets in the reals to C, 
and for any Borel function I the observable IA is the 
map A 01-1• The spectrum aA of A is the complement 
of the largest open set whose characteristic function 
acting on A produces O. The elements of C are natur­
ally identified to the idempotent observables. A state 
is a countably additive (on disjoint elements) prob­
ability measure on the logic. We shall define a quasi­
state as a finitely additive (on disjoint elements) 
probability measure on L Clearly the weak limit of 
any net of states will be a quasistate. We shall write 
.A(, for the set of all states on C, and assume the logic 
to be full. 
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Lemma 1: For each Q E C let Q be the function 
m ---->- mQ on .A{,. Then the partial order on C is 
transferred to pointwise partial order by the map A, 

Q' = 1 - Q and Q = I Qj iff Q is the pointwise sum 
of the Qj. 

Since the proof is straightforward, we shall omit it. 
Now consider the sets {m I mQ :::;; a}, for Q E C and 

a real, and the Boolean a-algebra :x: of sets that they 
generate in .A{,. Every function Q is measurable 
relative to :x: and, if fl is a probability measure on :X:, 
then Q ---->- S Q dfl is a state of C, because of the last 
relation in Lemma 1. 

One final remark before we prove our first theorem. 
Suppose that :x: is a Boolean a-algebra of sets and 1l a 
finite Boolean subalgebra. Given a (finitely additive) 
probability measure A on 1l, there exists a countably 
additive probability measure fl on :x: which agrees 
with A on 1l. To construct fl, we consider all nonempty 
intersections T = Sl (\ S2 (\ ... (\ Sn with Si E 1l; 
they are pairwise disjoint, finitely many, and every 
element of 1l is the union of such intersections. Choose 
a point t in each T, and for S E :x: let flS be the sum of 
all AT for the various sets T for which t E S; obviously 
fl is a countably additive probability measure on :X:, 
and for S E 1l we see that t E S iff T s; S, which implies 
flS = AS. 

Theorem 1: A quasi state q is the weak limit of states 
iff, for any real Cl , C2,··· , Cr and any Ql, Q2,··· , 
Qr E C, the condition I;~l cimQi ~ 0 for all m E .A{, 

implies I;~l CiqQi ~ o. 
Proof: Necessity is obvious. Assume the condition 

to hold and consider Ql, Q2, ... , Qr ELand an 
E > 0; we must produce a state m such that IqQi -
mQil < E for i = 1,2,·· . , r. We may assume Ito be 
one of the Qi' and consider the vector space of 
functions on .A{, spanned by the Qi. Our condition 
above implies that the map I CiQi ---->- I CiqQi is well­
defined, linear, positive and normalized to 1 on the 
function 1. Thus2 it extends to such a functional on the 
vector space of all bounded functions on .A{" measur­
able relative to :x:. Therefore, there exists a finitely 
additive probability measure A on :x: which generates 
this functional by integration. Now consider the finite 
Boolean subalgebra Xn of X generated by the sets 
{m I (k - l)/n < mQi :::;; kin}, k = 1,2, ... , nand 
i = 1,2, ... , r. We can find a countably additive 
measure fln on :x: which agrees with A on :X:n , and we 
see that IqQi - S Qi dflnl ~ n-l since qQi = S Qi dA. 
As the map Q ---->- S Q dfln is a state, all we must do is 
to choose n so that n-l < E. 

For any quasi state q and any bounded observable A 
we can define the expectation value of A in q as follows. 
Consider first the case of a finite spectrum {al , a2 , ••• , 

an}, so that A = I aiA({ai}); then the expectation qA 
will be defined as I aiq(A({ai}», and it is not hard to 
show that if we write A as I cjQj with Qj pairwise 
disjoint, then qA = I cjqQj. We shall have IqAI :::;; 
II A II, where for any observable we define II A II to be 
sup {IAII A E aA}. Now, if the spectrum of A is 
bounded, we can find a sequence of observables An 
which commute with A and have finite spectrum, 
while IIA - Anll tends to zero; then the limit of qAn 
exists and is independent of the sequence chosen, so 
that we can define the expectation qA of A in q as this 
limit. It is not hard to see that this expectation func­
tional is linear on commuting observables and positive 
on positive observables while IqAI :::;; IIAII for all A. 

Lemma 2: Let q be the weak limit of the states mj , 
i.e., limj mjQ = qQ for all Q E L. Then for any 
bounded observable A we have qA = limj mjA. 

Proof: Given E > 0, there exist reals ai and pairwise 
disjoint Qi E C such that A and I~~l aiQi commute 
while IIA - Ii aiQ;II < E/3. Also there exists a j(E) 
such that for j > j(E) we have IqQi - mjQil < 
E/3 Ii lail for all i. Thus we obtain 

II aiqQi - I aimjQil < E/3, 

ImjA - Ii aimjQil < E/3 

for all j > j(E), and IqA - Ii aiqQil < E/3. SO we 
have IqA - mjAI < E for j > j(E). 

Theorem 2: Suppose that every pair of bounded 
observables admits a unique sum, in the sense that 
given A and B there exists a unique C such that 
mA + mB = mC for all m E.A{,. Then the weak 
closure of .A{, consists of those quasistates for which 
the associated expectation functional is additive on 
the bounded observables. 

Proof: Since the states are additive, it is clear that 
their weak limits will also be, because of Lemma 2. 
Now suppose q is an additive expectation functional, 
so that it is actually linear, and that I cimQi ~ 0 
for all m E .A{,. Then m(I CiQi) ~ 0 for all m which 
means that the observable I CiQi has nonnegative 
spectrum.3 Thus q(~ CiQi) :;::: 0 and, as q is linear, we 
have I CiqQi ~ O. By Theorem I, q is the limit of 
states. 

Since in the case of a Boolean a-algebra sums are 
defined, we obtain at once Gudder's theoreml : The 
set of states is weakly closed iff every bounded positive 
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functional on the bounded observables is a multiple 
of an expectation functional corresponding to a state. 

We also observe that Theorem 2 supports a con­
jecture of Mackey4 to the effect that expectation 
functionals in Segal's sense should be limits of states. 

Finally we should remark that it is not clear under 
what a priori conditions on L the expectation func-

JOURNAL OF MATHEMATICAL PHYSICS 

tional of a quasistate is additive on noncommuting 
observables. 

1 S. P. Gudder, Can. J. Math. 20, 1276 (1968). 
2 J. L. Kelley and I. Namioka, Linear Topological Spaces (Van 

Nostrand, New York, 1963). 
3 S. P. Gudder, Trans. Am. Math. Soc. 119, 428 (1965). 
4 G. W. Mackey, The Mathematical Foundations of Quantum 

Mechanics (Benjamin, New York, 1963), p. 70. 
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A new analytic function method is utilized to study self-consistent vector interactions in the non­
rela!ivistic c~se. A ~ass formula is obtained as a function of the current and charge densities and found 
~o Yield 'part~cle radu near the Compton le.ngths for afumber of ele.m~ntary particles. With spin~urrent 
mteractlOns mcluded, the mass formula gives the baryon masses wlthm 10% at densities corresponding 
to the Compton lengths. The results lead to definite conclusions regarding the nature of strong forces. 

INTRODUCTION 

In earlier studies of the analytic properties of 
functions of several complex variables, the equivalence 
of analytic functions in complex variable representa­
tions with conserved functions in real variable 
representations was shown1 and utilized to study the 
self-consistent scalar interactions of a particle gas at 
arbitrary coupling strength in the nonrelativistic case2 

and also relativistically for a spinor and a scalar 
field. 1 We consider now a nonrelativistic particle gas 
interacting by means of a spin-dependent vector field 
and a scalar field, utilizing the same method developed 
for scalar interactions. Relativistic self-consistent 
pseudo scalar and pseudovector interactions have been 
studied by Nambu,3 who derived the condition for 
existence of massive nucleon states. 

Again we make use of transformations of the form 

H'(za) = eZaH(za)e-Za 

= H(za) + [za, H] + t [za' [za' H]] + ... 
oH 0'202H 

= H(z) + (j - + -2 - + ... (1) 
a Za OZ; 2 OZ;2 ' 

where ZII( = Z!fI( + iZ211(' Z1' Z2 > 0, is a sum of normal­
ized complex scalars and the (j ZII( are constants. The third 
line follows from the second after applying the funda­
mental quantum conditions to the classical brackets.l 
We look for eigenvalues z~ for which H' = H, that is, 
z~ satisfying 

=0, (2) 

and it can be shown that if (2) holds, then all the 
higher-order brackets in (1) vanish as well. For real 
variables, the z~ satisfying (2) are just the constants of 
motion of the conserved Hamiltonian H(z~). But Eq. 
(2) generates the Cauchy-Riemann equations in each 
variable so that, provided H satisfies sufficient con­
diti~ns in each variable, the z~ define the analytic 
regIOns of H and the analytic function for our complex 
variable representation corresponds to a conserved 
function for real variables. It is now a straightforward 
matter to impose momentum and energy conservation 
on H by writing down equations such as (2) for the 
eigenvalues of the momentum and energy. 

However, the z~ obtained from (2) are defined on 
the first quadrants so that H(z~) is conserved only on 
the first quadrants. From symmetry considerations 
corresponding to ordinary spatial reflections and time 
reversal in configuration space, it is necessary that the 
reflected function Ht(z~) also be analytic and satisfy 
equations such as (2) on the other quadrants. With 
this requirement the Hamiltonian becomes a constant, 
or analytic on the entire plane provided that there are 
no divergences or oscillations at infinity and if H 
and Ht satisfy sufficient conditions for analyticity in 
each variable. It can be shown that the sufficient 
conditions are satisfied if H is independent of angle 
or, otherwise, if H satisfies additional constraints 
which require that H be a constant on the entire planes. 

Our procedure now is to obtain equations such as 
(2) for all the conserved variables, that is, energy, 
momentum, and particle number in an interacting 
system, and solve them simultaneously for the new 
eigenvalues. 
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functional on the bounded observables is a multiple 
of an expectation functional corresponding to a state. 

We also observe that Theorem 2 supports a con­
jecture of Mackey4 to the effect that expectation 
functionals in Segal's sense should be limits of states. 

Finally we should remark that it is not clear under 
what a priori conditions on L the expectation func-
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tional of a quasistate is additive on noncommuting 
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A new analytic function method is utilized to study self-consistent vector interactions in the non­
rela!ivistic c~se. A ~ass formula is obtained as a function of the current and charge densities and found 
~o Yield 'part~cle radu near the Compton le.ngths for afumber of ele.m~ntary particles. With spin~urrent 
mteractlOns mcluded, the mass formula gives the baryon masses wlthm 10% at densities corresponding 
to the Compton lengths. The results lead to definite conclusions regarding the nature of strong forces. 

INTRODUCTION 

In earlier studies of the analytic properties of 
functions of several complex variables, the equivalence 
of analytic functions in complex variable representa­
tions with conserved functions in real variable 
representations was shown1 and utilized to study the 
self-consistent scalar interactions of a particle gas at 
arbitrary coupling strength in the nonrelativistic case2 

and also relativistically for a spinor and a scalar 
field. 1 We consider now a nonrelativistic particle gas 
interacting by means of a spin-dependent vector field 
and a scalar field, utilizing the same method developed 
for scalar interactions. Relativistic self-consistent 
pseudo scalar and pseudovector interactions have been 
studied by Nambu,3 who derived the condition for 
existence of massive nucleon states. 

Again we make use of transformations of the form 

H'(za) = eZaH(za)e-Za 

= H(za) + [za, H] + t [za' [za' H]] + ... 
oH 0'202H 

= H(z) + (j - + -2 - + ... (1) 
a Za OZ; 2 OZ;2 ' 

where ZII( = Z!fI( + iZ211(' Z1' Z2 > 0, is a sum of normal­
ized complex scalars and the (j ZII( are constants. The third 
line follows from the second after applying the funda­
mental quantum conditions to the classical brackets.l 
We look for eigenvalues z~ for which H' = H, that is, 
z~ satisfying 

=0, (2) 

and it can be shown that if (2) holds, then all the 
higher-order brackets in (1) vanish as well. For real 
variables, the z~ satisfying (2) are just the constants of 
motion of the conserved Hamiltonian H(z~). But Eq. 
(2) generates the Cauchy-Riemann equations in each 
variable so that, provided H satisfies sufficient con­
diti~ns in each variable, the z~ define the analytic 
regIOns of H and the analytic function for our complex 
variable representation corresponds to a conserved 
function for real variables. It is now a straightforward 
matter to impose momentum and energy conservation 
on H by writing down equations such as (2) for the 
eigenvalues of the momentum and energy. 

However, the z~ obtained from (2) are defined on 
the first quadrants so that H(z~) is conserved only on 
the first quadrants. From symmetry considerations 
corresponding to ordinary spatial reflections and time 
reversal in configuration space, it is necessary that the 
reflected function Ht(z~) also be analytic and satisfy 
equations such as (2) on the other quadrants. With 
this requirement the Hamiltonian becomes a constant, 
or analytic on the entire plane provided that there are 
no divergences or oscillations at infinity and if H 
and Ht satisfy sufficient conditions for analyticity in 
each variable. It can be shown that the sufficient 
conditions are satisfied if H is independent of angle 
or, otherwise, if H satisfies additional constraints 
which require that H be a constant on the entire planes. 

Our procedure now is to obtain equations such as 
(2) for all the conserved variables, that is, energy, 
momentum, and particle number in an interacting 
system, and solve them simultaneously for the new 
eigenvalues. 
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1. DERIVATION OF THE EIGENVALUE 
EQUATIONS 

We consider matrix elements of the Pauli Hamil­
tonian 

H(k, E) = (k, EI Ho - if-lG'.E.. x A(x, t) ax 
+ ~ A2(X, t) - AcP(X, t) /p) (3) 

2 

between initial momentum state p and final state 
E, k = P + q, where ka and E are complex variables, 
A is the scalar coupling strength, and '0 is the classical 
radius. The terms (a/ax). A + A • (a/ax) are eliminated 
from (3) by a suitable choice of boundary and initial 
conditions. The interactions are assumed to occur 
via scalar and vector fields defined by 

(0\ DcP(x, t) \q, E) = p(q, E) (4) 
and 

(01 DA(x, t) \q, E) = j(q, E), (5) 

where p and j are the charge density and current 
density, respectively. Noting that ak/ok* = 0, we 
see that H satisfies Cauchy-Riemann equations in 
k .. provided that 

dp = 0 and djp = ° (6) 
dk'* dk'*' .. .. 

and, since p and jp are defined on the first quadrants, 
it is evident (6) are satisfied; there are similar condi­
tions for E. The sufficient conditions require that H 
be independent of the angles defined by tan (Ja = 
dk2a/dk1a , tan cP = dE2/dE1, and tan y = dp2/~Pl and 
that H be a constant on the entire planes, satisfying 
dH/dk~ = dH/dE' = dH/dp' = 0. Thus the sufficient 
conditions determine the eigenvalues k', E', and p' 
without "continuations," but the Hamiltonian so 
defined is not necessarily an invariant under symmetry 
transformations k .. -- -ka and E -- - E, correspond­
ing to spatial and time reflections in configuration 
space and to rotations in the planes. The analytic 
"continuations" are associated with these transforma­
tions, and, in order that H be invariant on the entire 
planes, it is necessary that equations such as (2) be 
obtained on the entire planes. We therefore impose 
energy, momentum, and particle number conservation 
by means of the transformations 

eE"/EoHte-E*/Eo = Ht + E01[E*, Ht] + ... 
H t * dH

t 
= +a -+ ... 

E dE 
= Ht(ka, E'), (7) 

rfa*/koHte-ka*/ko = Ht + k;l[k:, Ht] + ... 
t dHt 

=H +a*-+'" ka dk 
t, a 

= H (k .. , E), (8) 

and 
eP"/POHte-P*/po = Ht + P01[p*, Ht] + ... 

= Ht + a* dH
t 

P d 
t p 

= H Ip-.p" (9) 

Here at, a:
lZ

, and a; are constants, Ht is the "con­

tinuation" of H onto the third quadrants, and the 
third lines are the conserved functions in the limits 
ka -- k~, E -- E', and p -- p', where k~, E', and p' 
are the solutions of eigenvalue equations such as (2). 
Finally, we require that all conservation laws hold 
simultaneously so that 
eP* /poeka * /koeE* /EoR t e-E* /Eoe-ka' /koe-I'* /Po 

= H\k~, E')II'""+p" (10) 

which simply requires that (7)-(9) yield simultaneous 
eigenvalues in the limits ka -- k~, E -- E' , and 
p -- p'. It can be shown that if (7)-(9) hold, then 
all brackets involving two or more different variables 
also vanish so that the eigenvalues k', E', and p' 
commute with each other as well as with Ht. 

It is evident from (2) that (7)-(9) are unitary 
transformations provided that there exist eigenvalues 
satisfying 

[E*' Ht] _ >I< I' dH
t 

, - (jE' 1m 
E .... E' dE 

(11) 

= 0, 
and 

(12) 

[ *, Ht] * I' dR
t 

p, =ap,lm-
f-+P' dp 

= 0. (13) 
The "continuations" giving H __ Ht are carried out 
by rotations through 7T on each plane carrying ka __ 
-k .. and E -- -E, and it is evident by inspection 
that Ht(-k, -E) -- H(k, E) provided that 

p( -k, -E) -- p(k, E) 
and 

which are satisfied if the charge and current densities 
are functions of the kinetic energies of occupied states 
in the usual manner. 

If the current and density are analytic on the entire 
planes, then 

d/ dj; d/ dj; 
-=-=-=-=0 
dka dka dE dE ' 

(14) 

and with (5) we obtain 

aA _ 2 'T2 aA = _ 2E jr2 
ok' - q J 'aE c2 

(15) 
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and with (4) also 

'O~ _ 2 ' r2 
'Ok' - q P , (16) 

Combining equations (11), (12), (15), and (16) gives 

(O'~,)-l[E'*, Ht] 

= -2ET2(,uo. k' x j + roA. j - Ap) 

= 0 (17) 
and 

(O'k>J;)-l[k'*, Ht] 

= (k'lm) - ,uo x A + 2r2 

x (,uo • k' x jq + roA . jq - Apq) 

= O. (18) 

Now evaluating (18) in the limit E -+ E' gives for 
the momentum eigenvalues 

k' = (ele)o x A, (19) 

and (17) gives the renormalized propagator 

r = (roj • j)-l(Ap - ,uo • k' x j), (20) 

where j. j represents the scalar product of three 
complex variables. With (20) we obtain for the 
excitation energies 

E,2 = 1. (k' _ )2 + ~ j . j (21) 
2 (/. PIX 2 1 k" me m me ILp - ,uo • x J 

and for the fields 

~ = ~c + ~T 
A p2 e p ,. 

= - - - - - 0 • k x J (22) 
roj·j cxj·j 

and 

A = Ac + AT 

A pj e j ,. 
= - - - - - 0 • k x J (23) 

roj·j cxj·j 
so that 

pA=N (24) 

holds for both terms in (22) and (23). 
In (21) the first term on the rhs is the new kinetic 

energy which reduces to the initial value in the absence 
of excited states, and the second term represents a 
mass eigenvalue introduced by the interactions in 
which the e2j. j/J..pm2e2 part is related to the terms 
~c and Ac in (22) and (23). The first terms in (22) and 
(23) evidently represent central fields proportional to 

J..mc2 p 

Afro multiplied by kinematical factors, but the second 
terms represent spin and momentum-dependent fields 
which obviously predominate at sufficiently high 
momentum, thus at A = e, at Njo x k. vlNp > mc2 , 

where N j and Np are the current number density and 
scalar number density, respectively. Note that the 
coupling of the noncentral field is elcx and that at 
pllil = 1 the noncentral and central forces are equal 
at Ikl!cx '" rol and the noncentral forces predominate 
below the Compton length. 

The mass eigenvalues in (21) are related to the fields 
~ and A by 

,2 2 ro j . j 
m c =--

A p 
(25) 

for the central fields and by 

m"2c2 = j . j/j • A (26) 

for the total fields. Now comparing (25) and (26) and 
remembering that, at sufficiently high density, 
flO • k' x jl Ap » 1, we see that the central field con­
tributes the larger part to the mass in this region. 
This suggests that for Ikl/cx ;;::: rol the central force 
becomes the inertial force and the repulsive interaction 
is due to the noncentral force. If the signs of k, j, the 
spin, and angle dependences are such that ~c and ~T 
have opposite signs and ~c is attractive [and it can 
be shown that the scalar potential energy must be 
attractive in the Hamiltonian (3)], then, as ~c decreases 
relative to ~T' the density increases so that ~c yields 
an inertial force increasing the condensation. As the 
angular momentum forces do not increase absolutely 
with increasing density, they contribute smaIJ terms 
to the noncentral forces. We expect that, in a similar 
manner as for Coulomb forces, there exist equilibrium 
states which occur at values of m" for which the total 
central and noncentral forces balance and that the 
(m")'s occur in each density region at certain values of 
k, j, and the spin and for certain angle dependences; 
that is, the momentum, spin, and current have definite 
eigenvalues and selection rules corresponding to the 
observed masses. It remains, therefore, to establish 
the nature of the forces and the density dependence. 

In Eq. (25) both the current and density are con­
served, as is evident from the analyticity of m' in the 
j" and p, provided, of course, that m' is differentiable 
in all variables. Writing j(/. = ~(/. + 0.,. and p = 
PI + ip2 gives 

= L (~; - J..!)Pl + (~(/.J..(/. + J..(/.~(/.)P2 - i[(~! - J..!)P2 - (~(/.J..(/. + J..(/.~a)Pl] 
(27) 
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Now consider the stable masses determined by 

Am;2 1m m,2Jm2 = -(~; - A!)P2 + (~~A~ + A~~~)Pl 
fl 

= 0, (28) 
which gives 

A = -~{~ =f [eJ + 1 r}, (29) 

with A2 = 2 A; and ~2 = 2~; so that [~, A] = 0. 
Obviously, at A = ° we have P2 = O. Hence, as P2 -+ 0 
the two singularities cancel on the rhs of (29) so that 
A -+ 0 uniformly as pz -+ O. Now consider 

1· l' P2 2Pl 1m 1m-=-, 
-<-->0 pz-->O A ~ 

(30) 

which is obtained from (28). In the limits the rhs 
approaches a finite value and the lhs must approach 
a constant since pz and A are not independent func­
tions. With lim pzj}. = E as P2 -+ 0, A -+ 0, we obtain 
~ = (2/E)PI' Thus the stable masses given by (27) 
result always from a correlation of PI and ~ such that 

Ame
2 

m' . PIe ( 3Pi) 
-2- Re - = hm 2 2 1 + -2 

fl m P2-->O PI + P2 4pI. 
(31) 

reduces to a constant. As has been indicated, this 
result can be derived from the requirement that 
m'21m2 be analytic in the current, that is, that m'21m2 

conserve the current. 
Since m'2jm2 satisfies the Cauchy-Riemann equa­

tions on the current planes, it is invariant under 
rotations on the current planes. Then m'2jm2 obviously 
has the symmetry of the current so that we identify 
~ = (2/E)PI with a central potential. Noting that 
1>c 2 me2()., in the limit we have p2ji • i = 1, and from 
this we deduce that (30) is equal to 2. The value of E 

can be obtained also from the condition 

p2 N 2 e2 
Re - = Re.-..E - > 1 (32) •. N2 2-J • J j v 

since ej v 2 1 and Npj N j 2 1 in order that the total 
number density exceed the current number density. 
At the lower bound one finds for stable masses 
~ = PI' which gives E = 2. 

With these results we obtain the limiting value in 
(27), and with }, = e we find 

m' jm = fl(Np jmc2)! 

(33) 

where r' is the particle radius corresponding to the 
mass m'. For any reasonable value of Re Np in the 
nuclear region, one obtains, in units of the electron 
mass, m' jm ::::::: 103 so that the mass eigenvalue is in 
the range of the nucleon in the correct density region. 

Moreover, the radii obtained from (33) for several 
particle masses are near, and apparently have simple 
relations with, the Compton lengths (see Table I). It 
appears, therefore, that the particle masses are simple 
functions of the charge density. For example, with 
(33) the exact nucleon mass gives Np = 8.3.1039 cm-3, 

which gives a nucleon radius of r' = 0.31 F compared 
to the Compton length of 0.21 F. Evidently the 
Compton length Ac corresponds to the bare nucleon 
with no meson whereas m' Jm should include terms 
corresponding to the meson and binding energy. 
Hence, the mass difference corresponding to r' and 
Ac should bound the meson plus binding energies. 
However, (33) gives m' (m = 3300 at the proton 
Compton length which leaves 6.mjm = 1460, which 
is certainly too large for pion interactions; moreover, 
if one expects the extended radius to be of the order 
of the pion Compton length, one finds the pion 
length 1.41 F is completely at variance with r~ obtained 
from (33). The charged pion radius obtained from 
(33) is 1.1 F, which is within 10% of the effective 
nuclear radius entering the formula for nuclear radii, 
and suggests that pion exchange predominates for 
nuclear interactions. Tn this connection it is probable 
that pions play the same role in nucleon-nucleon 
interactions as that of phonons in solids. 

The ratios of the particle radii to the Compton 
lengths are r'jAc = (am'jm)!, and the constant values 

TABLE I. Comparison of particle radii calculated from (33) and 
Compton lengths. 

Pseudo scalar 
mesons 

Baryons 

Vector 
mesons 

pO 
w 
4K* 
1> 

r'(F) 

1.10 
1.13 
0.47 
0.47 
0.44 

0.31 
0.31 
0.27 
0.26 
0.26 
0.26 
0.25 
0.25 
0.21 

0.35 
0.35 
0.32 
0.29 

},c(F) 

1.41 
1.46 
0.40 
0.39 
0.36 

0.21 
0.21 
0.18 
0.16 
0.16 
0.16 
0.15 
0.15 
0.11 

0.26 
0.25 
0.20 
0.17 

R = r'lAc 

0.78 
0.77 
1.19 
1.19 
1.23 

1.47 
1.47 
1.56 
1.60 
1.60 
1.60 
1.65 
1.65 
1.97 

1.38 
1.39 
1.61 
1.67 
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of these ratios within the observed multiplets (see 
Table 1) suggests that the multiplet masses vary as 
<x-I X const so that the splittings are due to electro­
magnetic interactions as expected. 

In the electrodynamic region (,....., 1033 cm-3) Eq. (33) 
predicts masses in the range of the electron mass; for 
example, for m'lm = 2 we find Nt> = 9.5.1033 cm-3 

corresponding to a radius r' = 0.29.10-11 em, corre­
sponding to the pair threshold. In the same way the 
density Nt> = 25.2.1039 cm-3 corresponds to the 
nucleon threshold, and so on. In this way one is led 
to the concept of the particle hierarchy as entirely a 
function of the density region (see Table I). More 
precisely, one expects the observed particle masses to 
occur as stable states of the renormalized fields (22) 
and (23), and it is evident from (25) and (26) that the 
mass is related to the fields in a simple manner. 
Equations (22), (23), and (33) lead to definite conclu­
sions regarding the nature of strong forces; obviously, 
the current-current forces play an important role 
since ,u2j 0 j occurs in the numerator of the mass 
formula (33). A straightforward dimensional analysis 
shows that at sufficiently high density the current 
interactions predominate since the magnetic force 
,uj varies as Acr-3, whereas the electric force varies as 
,-2 and AC is the Compton length. Thus in a single­
particle formulation for electrons, the ratio of magnetic 
to electric forces exceeds unity at a density corre­
sponding to r ~ Ac. In the present formulation, 
which includes the many-body effects in p and j, we 
see that the ratio exceeds unity at ,u Ijl/A Ikl 4> = 
,u iii j 0 if Ap2 Ikl > 1, and it is evident this condition is 
satisfied at a sufficiently large value of the current 
density. It follows that, in the region of nuclear 
densities, m' must result predominantly from an 
inertial central field term opposed to the current 
interactions; this follows directly from the observa­
tion that m'2 varies as ,u2j 0 il p, where ,uj is the magnetic 
force ,..."" Aeris, where (t7T)r~ = Vj is the current 
volume and Ac is the electron Compton length. Hence, 
in the stationary limit [see Eq. (27) and discussion] we 
find m'2 = (3me2/41Tc2)J.Z/r;. However, this gives a 
continuous spectrum so that the observed masses 
must be fixed by selection rules which give the proper 
sign for the noncentral field and which give the balance 
of central and noncentral forces. 

From the discussion of the previous paragraph, 
one expects that at densities corresponding to the 
Compton lengths the current forces and central forces 
exactly balance and that the resulting particles are 
free and noninteracting. In this picture it is clear why 
the radii obtained from (33) are all (with the excep­
tion of the pions) larger than the Compton lengths, 

as only in this way can particles occur as bound states 
with finite decay times. Thus the mass differences 
corresponding to the r' - AC differences are to be 
associated with binding potentials, that is, with 
mesons or with short-range collective excitations and 
their interactions with the bare particles. 

In the calculations of the previous paragraphs we 
set (0' x j)2/j 0 j = 0 and P2 = 0 = A, thus neglecting 
the noncentral field and the oscillating terms in the 
current and density; the effects of the latter are 
expected to be small compared to the noncentral field 
corrections, which we now consider. 

2. SOLUTION OF THE MOMENTUM 
EQUATION 

The difference between the bare nucleon mass of 
3300m obtained from (33) at the Compton length and 
the observed mass obtained at 0.31 F suggests that 
the extended radius is associated with the noncentral 
field which reduces the bare mass to approximately 
the observed value. We must therefore evaluate k' 
in the noncentral terms in order to obtain explicit 
expressions for 4>,1' and AT' With (23) the momentum 
becomes 

, AP 0' X j ( ,u ,.) k = - -'-0 1 - - 0' 0 k x J 
,u J' J AP 

A p o[ ,u =--;-:O'Xj 1+-O'Xj 
,u j 0 J AP 

X (~!-: 0' X j) ( 1 + 1::. ... )] 
,u J 0 J Ap 

A P 0 ( (0' X j)2 
=--;-:O'xJ 1+ .. 

,ujoJ JoJ 

+ (0' X j)4 ... ) 
( • ')2 + J 0 J 

and the fields and excitation energies are 

and 

A.. J. p2 [ (0' X j)2 
'I'=--1+~---=~ 

ro j 0 j j . j 

X (1 + (O'j ~ t2) 1 + .. -} 

A=-- 1+-'--~ 
;" pj [ «J X j)2 

roj·j j.j 

X (1 + (O'j ~ t) 1 + .. J 

(34) 

(35) 

(36) 
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Noting that j. j = p2A. A/4>2, we expect the series 
to terminate after a finite number of terms and at a 
value corresponding to one of the observed masses. 

For .Ie = Ze we find that Ze~ and roA2 are inde­
pendent of the coupling strength and are functions 
only of the mechanical degrees of freedom, but the 
m'2 term is a function of the coupling in the central 
term and the noncentral contribution can be equated 
to functions of ~ or A. Hence, we expect the mass 
eigenvalues to be fixed at certain ratios of the central 
field mass to the noncentral contribution. Thus we 
have 

m" 2 
ft2 j. j ( (0 X j)2 )-1 

-=--1+ +''', 
m2 mc2 .1ep j. j 

(38) 

and we expect the factor 1 + (0 x j)2/j • j + ... 
to converge at the observed masses. We find that (38) 
gives the observed nucleon mass within 10% when 
this factor equals 4, and the same value gives agree­
ment for AO, ~o, and EO within 6 %. Since (37) gives 
better than order of magnitude agreement with the 
observed baryon masses at densities corresponding 
to the Compton lengths, evidently the noncentral 
contribution can be treated as a perturbation since 
the reduction factor 4 corresponds to a correction of 
less than unity. Thus, for small non central contri­
butions, (35)-(38) become 

,,' .Ie P '(1 (0 x j)2)-1 ... =--oxJ - , 
ftj·j j.j 

(39) 

'" = ~L[1 (0 x j)2(1 _ (0 x j)2)-1J, 
'f' •• + . . . . 

roJ'J J'J J'J 
(40) 

A pj [ (0 X j)2( [0 X j]2)-1] A=--1+ 1- , 
roj·j j.j j.j 

(41) 

and 

m"
2 

= L j. j(l _ (0 x j)2). (42) 
m 2 mc2 Ap j. j 

As pointed out in the preceding paragraphs, Eq. (42) 
gives good agreement with observed neutral baryon 
masses for (0 x j)2/j • j = ! at densities (see Table II) 
corresponding to the Compton lengths, which suggests 
that the spin-current interactions can be treated as 
the generators of the ordinary spin group with s = t 
for baryons. For the vector mesons one obtains agree­
ment within 17 % for pO and within 2 % for the 
decouplet K* with S = !; for the pseudoscalar 
mesons, however, the calculated masses agree within 
about 40 % with observed values. That the spin-

T ABLE II. Masses calculated from (49) with spin-current 
corrections and compared with observed masses. 

mH/m 
Particle s mH/m (observed) 

,," 0 181 264 
KO 0 1289 975 
11° 0 1490 1078 
n t 1661 1839 
A" ~ 2137 2188 
:Eo t 2347 2338 
EO .~ 2747 2578 
po ~ 1266 1535 
4K* ~ 1779 1749 

current interactions generate the ordinary spin group 
is supported also by an examination of the Ta and Y 
values for the baryon and meson multiplets, which 
show that the (0 x j)2/j • j interaction cannot be 
assigned to either the isospin or hypercharge groups. 
Within each multiplet, however, the best results are 
found at strangeness = ± 1, with quite good agree­
ment within the baryon and vector meson multiplets. 
This suggests that the discrepancies at both ends of the 
baryon multiplet can be accounted for by the strange­
ness numbers. 

Table II gives the masses calculated at densities 
corresponding to the Compton lengths and the 
observed spin values for baryons and mesons. One 
expects the differences between the observed and 
calculated masses to be accounted for by the short­
range collective effects associated with finite values of 
the current and density fluctuations A~ and P2' It is 
clear from the discussion that these are to be associated 
with isospin and strangeness conserving subgroups. 
According to this picture, with the spin-current 
interactions turned off, the central field contracts 
until the current-current forces are exactly balanced 
at densities corresponding to the Compton lengths. 
These bare particles occur with spins aligned along the 
currents, there are no current or density fluctuations, 
and no further interactions occur. With the spin­
current interactions turned on, additional repulsive 
forces opposing the condensation result in extended 
radii and reduced masses which are given approxi­
mately by (42). The current and density fluctuations 
induced by the spin-current interactions then induce 
higher-order interactions and must be conserved 
with the total density and current. 

* Permanent address: Box 94, La Jolla, California. 
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2 J. T. Anderson, J. Math. Phys. 11, 2463 (1970). 
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New examples of continuous representations are obtained utilizing the theory of kernel functions 
for a finite domain D in the complex z-plane. It is shown how, by starting with the continuous represen­
tation for a circular domain, the Riemann mapping theorem makes it possible to obtain the continuous 
representations with respect to any finite, simply connected schlicht domain with at least two boundary 
points. A m.ethod of. constru~tin~ orthono:ma.1 polynomials with respect to a class of weight functions 
for both fimte domams and mfimte plane IS gIven. The standard coherent states employed in quantum 
optics and quantum field theory emerge as a particular case of the present investigation. 

1. INTRODUCTION 

The relationship between reproducing kernels1.2 and 
continuous representation3 has been noted in general 
terms in the literature,4.5 but not fully exploited in 
the construction of continuous representations. That 
the orthonormal, analytic functions of a complex 
variable provide a direct way of constructing re­
producing kernel functions has been observed by 
Bergman! and used extensively in the study of differen­
tial equations. Bargmann5 studied the Hilbert space of 
entire analytic functions defined by an inner product 
with respect to the measure p = exp (-zz) and 
obtained coherent states6 as a particular case. 

The contribution of this investigation is threefold: 
first in showing how the theory of kernel functions 
defined on a finite domain D can be utilized in the 
construction of new continuous representations; 
second in the use of conformal mapping in conjunction 
with the Riemann mapping theorem to obtain 
continuous representations with respect to any finite, 
simply connected, schlicht domain having more than 
one boundary point; third in the explicit delineation 
of a method of construction of orthonormal poly­
nomials with respect to a class of weight functions for 
both finite domains and infinite plane. The standard 
continuous representation emerge as a particular case 
of our treatment. 

The general theory of reproducing kernels is 
summarized in Sec. 2, while the formalism for 
constructing continuous representations using kernel 
functions is outlined in Sec. 3. Two explicit examples 
for finite domains are treated in Sec. 4. The weighted 
kernel function is considered in Sec. 5; a method 
of constructing closed orthonormal system offunctions 
with respect to weight function y(x, y) over a finite 
domain is presented. The extension of these ideas to 
the infinite plane calls for further restrictions on 
y(x, y). This is .discussed in Sec. 6 with the aid of 
two examples. Further possible generalizations are 

indicated in Sec. 7. A discussion of the paper is 
presented in Sec. 8. 

2. REPRODUCING KERNELS AND HILBERT 
SPACES OF ANALYTIC FUNCTIONS 

In this section we briefly review the properties of 
reproducing kernels in Hilbert spaces of analytic 
functions.1.2 Consider the class of all single-valued 
analytic functions {f} defined over a finite domain D 
in the complex z = x + iy plane. Introduce a norm by 

Ilfllt =LI/(zWdw, (2.1) 

where dw = dx dy, and the inner product 

(I, g)D = LI(z)g(z) dw. (2.2) 

Then Bergman has shownl that the class of all f 
such that IIJIID exists is in fact complete in this norm 
and forms a Hilbert space with a countable base, 
which we shall call C2(D). He has also shown an 
analog of the Riesz-Fisher theorem for this Hilbert 
space. 

The Riesz-Fisher Theorem 

Let {lPn} be an arbitrary orthonormal set in C2(D), 
and let the numbers ao, a l , a2 ••• be such that 

(2.3) 

Then there exists a function f E C2( D) such that 

(2.4) 
and 

00 

IIIII =! lan l2
• (2.5) 

n=O 

It should be noted that the above theorem, while 
apparently identical in form with the more usual 
Riesz-Fisher theorem, is a much stronger theorem, 

868 
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since the Hilbert space is of analytic functions. It is 
this aspect which leads to the possibility of a con~ 
tinuous representation and a reproducing kernel. 

Repr9ducing Kernel 

The kernel function for the Hilbert space C2(D) is 
defined by 

00 

KD(z, z') = ~ 1fliz)1fliz'), (2.6) 

where 1fln(z) is any complete orthonormal set in 
C2(D). It has been shown by Bergman7 that (2.6) 
converges absolutely and uniformly with respect to 
z(z') for any fixed z'(z), when z and z' belong to any 
closed subdomain D' c D. The result of this is that 

the kernel function KD(z, z') is an analytic function of 

the two complex variables z, z'. Also, 
00 

KD(z, z) = ~ l1fln(z)1 2 < 00. (2.7) 
n~O 

The kernel function is a reproducing kernel 

J KD(z, -;;)f(z') dw' = J n~o 1fln(z)1fliz')f(z') dw' 

00 

= ~ an1fln(z) 
n~O 

= fez). (2.8) 

From this reproducing property it can be seen that 
the kernel function can depend only on the domain D 
and not the set {1fln} used to construct it. 

One should note particularly the very great difference 
between (2.6) and the more usual type of relation-for 
example, true for complete orthonormal functions 
{1fln} on the real line: 

00 

KR(x, x') = ~ 1fln(x)1fln(x') = o(x - x'). (2.9) 
n~O 

The delta function is a reproducing function, but is 
not continuous or analytic like the kernel (2.6). 

The basic difference is that K(z, ?) is a reproducing 
function only for square integrable analytic functions. 

The effect of conformal mapping of Dz to Dw on 
C2(D) has been studied. l Let 

w = k(z) (2.10) 

define the conformal mapping of Dz to Dw with 

Z = hew) (2.11) 

defining the inverse mapping. Then, if f E C2( D) with 
dww = du dv, 

r If(h(w»h'(wW dww = r If(z)1 2 Ih'(w)1 2 o(u, v) dw z JDw JD. o(x, y) 

= r If(zW dw., (2.12) JD. 

because the Jacobian 

o(u, v) = Ih'(w)r2• 

o(x, y) 

From (2.12) it follows thatf(h(w»h'(w) is a function 
of the class C2(Dw)' Also it can be shown that the 
functions 

4>n(w) = 1fln(h(w»h'(w) (2.13) 

form a closed orthonormal system with respect to 
D w , with 

- -- dz dz' 
KDw(w, w') = KD.(h(w), h(w'» - - (2.14) 

dwdw' 

as the reproducing kernel. Thus, starting with a given 
set of orthonormal functions in a domain D, we can 
construct new orthonormal systems by studying the 
conformal mapping of the domain D. The Riemann 
mapping theoremS states that an arbitrary, finite, 
simply connected schlicht domain D with more than 
one boundary point can be conformally mapped into 
a unit circle. Thus starting with a complete ortho­
normal system in the unit circle [see later, (4.1)], we 
can construct a complete orthonormal system in any 
finite, simply connected, schlicht domain D with more 
than one boundary point by using (2.l3), where (2.11) 
is the conformal mapping function of the unit circle 
into D z' The completeness of the system in D z follows 
from the completeness of the initial system in the 
unit circle. 

3. CONTINUOUS REPRESENTATIONS USING 
THE ORTHONORMAL SYSTEM IN J.:2(D) 

The continuous representations in Hilbert space 
was introduced in its most general form by Klauder.3 
Roughly speaking, the continuous representation Iz) 
labeled by complex number z is such that the inner 
product (z I z') is a continuous function of z as z' 
approaches z and that it constitutes an overcomplete 
family of states. The coherent states are a particular 
realization of these continuous representations. Our 
aim is to construct new realizations of the continuous 
representations with the help of the formalism set up 
in Sec. II. 

We define a continuous representation IZ)D as 
follows: 

00 

IZ)D == L 1flnCz) In), (3.1) 
n~O 

where the states In) belong to the Fock space:F. They 
are characterized by 

(n I m) = 0nm, (3.2) 
00 

Lln)(nl=1. (3.3) 
n=O 
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The states IZ)D defined by (3.1) do indeed form a 
continuous representation. The norm of IZ)D is given 
by 

<Xl 

// IZ)DI1 2 = (z I Z)D =! I "I'n(zW = KD(z, z) < 00. 
n=O 

(3.4) 
The inner product (z' I Z)D is given by 

<Xl 

(z' I Z)D = I "I'iz)"I'n(z') = KD(z, z'), (3.5) 
n=O 

where we have used (3.2). From the uniform conver­
gence of (2.6) it follows that (z' I z)D is a continuous 
function of z at Z = z'. Thus expression (3.1) defines a 
continuous representation. The complete set of 
classical orthonormal polynomials over a real line 
cannot be used because KR(x, x') is not a continuous 
function of x at x = x', but rather a generalized 
function of x and x', for instance, b(x - x'). That 
IZ)D form over a complete family of states is seen as 
follows: 

LIZ)D(ZID dw = fD nt "I'n(Z) "I'm(z) In) (ml dw 
m=O 

<Xl 

= I In)(nl = 1. (3.6) 
n=O 

(3.6) is a reflection of the Riesz-Fisher theorem 
proved in Sec. 2 and, when the integral is interpreted 
to converge weakly, simply means that 

Lg(Z)h(Z) dw = (g, h)D = n~/nhn' 
which follows by linearity from (2.5). 

4. EXAMPLES OF CONTINUOUS 
REPRESENTATIONS 

A. Orthonormal Polynomials over a 
Circular Domain1 Izl < R 

The polynomials are given by 

"I'n(z) = [en + l)/7T]!zn/RnH. 

The inner product is 

, <Xl n + 1 (z,)n(z)n R2 
(z Iz)=I-- =----

n=O 7T R2(n+1) 7T(R2 - Z'Z)2 

Also 

(4.1) 

(4.2) 

(4.3) 

It is of interest to construct the operator A whose 
eigenvectors are Iz). To this end we assume that there 
exist annihilation and creation operators a and a+, 

respectively, such that 

[a, a+] = 1, (4.4) 

a In) = In In - 1), (4.5) 

a+ In) = (n + l)! In + 1), (4.6) 

N In) ::: a+a In) = n In). (4.7) 

Using (4.5) and (4.7), we easily check that 

A Iz) = z Iz), (4.8) 

where 

A= R 
(4.9) a 

(N + 2)! 
and 

<Xl C + I)! zn Iz) = I -- --In). 
n=O 7T Rn+1 

(4.10) 

Also 

Iz) = u 10), (4.11 ) 

where 

U = elzI2/2Rl(N ~ 1)!r e(1/RHza+-ia). (4.12) 

We note that U is not an unitary operator. We will 
now show that attempts to redefine Iz) so that the 
redefined states are generated from the vacuum by a 
unitary operator destroy the analyticity of the 
associated function space. Suppose we set 

Iz» == exp (-lzI2/2R2)[7TR/(N + 1) I]! Iz), (4.13) 

where we recall that N is the number operator, then 
// Iz»//2 = 1. But (4.13) together with (4.10) yields 

Iz» = eHzI2/2R2) I _l_(.~Yln), (4. 14a) 
n=O In! RJ 

which are just the standard continuous representations 
with the complex number Z replaced by z/R. Note 
that the functions exp [(-lzI2/2R2)(1/Jn!)(z/R)n] are 
no longeranalytic in z. We also note that, though the 
vectors 

J.:L = (R2 -lzI
2

)!(n + I)! ~ In) (4. 14b) 
Illz)1I R n=O Rn+1 

have unit norm, the functions [en + 1)/Rn+2](R2 -
Izl 2)zn are not analytic in z. Thus, in our presentation, 
we do not employ either of the definitions (4.13) or 
(4.14b). We will adhere to the definition (3.1). 

B. Orthonormal Functions over an Elliptic Domain9 

(x2/cosh2 a) + (y2/sinh2 a) < 1 

The functions are 
e(n+l) cOBh-1 z 

"I'n(z) = en+! . h ( h-1) , 
SIO cos Z 

(4.15) 
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where 

( 
(n + 1»)~ (4.16) 

Cn+! = TT sinh 2(n + l)a . 

The proof of orthonormality of (4.15) is outlined in 
the Appendix. The Iz) constructed with the aid of 
(4.15) can be shown to be eigenstates of 

B - ( sinh [2(N + 2)a] )!a (4.17) 
- (N + 1) sinh [2(N + l)a] , 

with the eigenvalues ecosh-l z = Z ± (Z2 - I)!. Note 
the degeneracy in the eigenvalue. Also 

Iz ± (Z2 - I)!) = V± 10), (4.18) 
where 

V± == exp (t leCOSh-l Z12) 

exp (cosh-1 z) ( (N + I)! )! 
X sinh (cosh-1 z) TT sinh [(N + l)a] 

x exp [exp (cosh-1 z)a t - exp (cosh-1 z)a]. 

(4.19) 

5. WEIGHTED KERNELSI0 AND CONTINUOUS 
REPRESENTATIONS-FINITE DOMAIN 

The theory of reproducing kernels and consequently 
that of the continuous representation can be further 
generalized by modifying (2.2) to 

(j, g)/J,D = LI,u(Z)1 2f{Z)g{Z) dw. (5.1) 

If ,u(z) is an analytic weight function not equal to 
zero in D such that 

(5.2) 

then ,u(z) can be absorbed into the definition of the 
function, and the inner product (5.1) will then be with 
respect to the unit weight function. 

The orthonormal system with a general weight 
function has been sparsely studied in the literature. 5.10.11 

Sufficient conditions have been imposed on the weight 
function rex, y) to obtain closed orthonormal system. 
We will use the method of conformal mapping to 
construct weighted orthonormal functions. To the 
best of our knowledge this does not seem to have been 
carried out in the literature. We will also discuss the 
question of extending the domain D to cover the 
entire complex plane. 

We first present a method of constructing ortho­
normal polynomials over any schlicht domain that is 
simply connected with more than one boundary 
point. We start with the orthonormal set 

(5.3) 

where cP E [a, b] and rx.{cp) is a weight function. 
Multiplying (5.3) by 

iR 
pP(p)Gn(p)Gm{p) dp = Cnm < 00, (5.4) 

where pep) and Gn{p) are such that Cnm < 00, to 
obtain 

1:0 I:=/ dp dcpP(p)rx.(cp)Gn(p)Rn(cp)Gm(p)Rm(cp) 

= cnnt5nm, (5.5) 

we will now consider p and cp as the modulus and 
amplitudes of a complex variable w = peiq,. The 
function 

where A{p, cp) = A(p, cp), is orthonormal with respect 
to the weight function P{p)rx.(cp) in the sector S{p, cp; 
o ~ p < R, rx. ~ cp ~ b} in the w plane. Let 

w = u + iv = F(z), z = hew), 

du dv = 1F'(z)1 2 dx dy 

(5.7) 

(5.8) 

define a conformal mapping of S to some domain Dz 
in the z plane. Since we are interested in analytic 
orthonormal polynomials, we want "Pn(P, cp) to be an 
analytic function of z when p and cp are expressed in 
terms of z using (5.7). Since an analytic function of an 
analytic function is again an analytic function, we 
demand that "Pn(P, cp) be an analytic function of 
w = peiq,. The only way we can restrict (5.6) so as to 
be analytic function of w is to stipulate 

A{p, cp) = const. 

(5.9) 

(5.10) 

(5.11) 

Without loss of generality we can set A{p, cp) = o. 
Then 

wn [F(zW 
"Pn(w) = - = -- . (5.12) 

~cnn ~cnn 

The choice (5.1O) yields a = -TT, b = +TT, and 
rx.{cp) = 2TT. From (5.9) it is clear that Pcp) should 
obey the restriction 

iRp(p)pm+n+! dp = Cmn < 00. (5.13) 

Thus the polynomials 

(5.14) 
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are orthonormal over D z with respect to the weight 
function 

y(x, y) = (1(/F(z)I) IF'(z)1 2• (S.1S) 
217' 

The crucial point in the construction outlined above 
is the separability of the area measure and the 
functions 'lfn(P, 1», in terms of p and 1>, in the w plane. 
Thus, given a domain Dz , we first construct its con­
formal mapping, w = F(z) to the circle C in the w 
plane. So long as the given domain is a simply con­
nected schlicht domain with more than one boundary 
point, this can be done according to the Riemann 
mapping theorem.2 Then we use this mapping function 
to construct the orthonormal set (S.14); the corre­
sponding weight function is given by (S.IS). 

We use (S.14) and (S.1S) to construct continuous 
representations. We consider the Hilbert space of 
analytic functions defined by 

IIJ1I;,D = iny(X, y) If(zW dm (S.16) 

and 

6. WEIGHT FUNCTIONS FOR THE INFINITE 
PLANE 

In the literature6 the infinite z plane is used in the 
construction of continuous representations. A straight­
forward way of obtaining such representations here is 
studying the limit of the integral (S.13) under R -+ 00. 

Thus all (1(p) satisfying 

Loo{J(p)pm+n+1 dp = cmn < 00 (6.1) 

will yield orthonormal set (S.14) with F(z) = z over 
the complex Z plane. With (J(p) = e-p2(7T, we obtain 
Cnn = n !/27T and 

2 00 

Iz) = e-lzI/2Izn/~n! In), 
n~O 

which is the standard continuous representation. New 
continuous representations can be obtained by making 
different choices of fJ(p). For example, fJ(p) = 
e-klP cosh k2P with kl > Ik21 leads to 

Cnn = t(2n + l)![l/(k l - k 2)2n+2 + l/(k l + k2)2n+2]' 

(6.2) 

(j, g)y D = r y(x, y)J(z)g(z) dm. , JD (S.17) The corresponding continuous representation can be 
written down easily. 

We denote this by C~(D). Here y(x, y) is already 
restricted by (S.13) via (S.1S). Ify(x,y) is a positive, 
continuous, differentiable function of x and y in a 
domain that includes D, then there existsll an ortho­
normal system with respect to the inner product (S.16). 
The system also possesses an analytic kernel function. 
The continuous representations associated with (S.14) 
are 

1 00 [F(zW 
iZ)y,D = [y(x, Y)r~o ~cnn In) 

1 00 [F(z)F(z')JU 
(z' I Z)y,D = [y(x, y)y(x', y')]~ I"----'-~---'-"-

n~O Cnn 

The states F(z) are eigenvalues of 

C = [cN+1N+l/(N + l)cNN]ia, 

with F(z) as eigenvalues. Again 

IZ)y.D = W 10), 
where 

W = [y(x, y)]! exp [/F(z)1 2/2](N!/C NN)! 

(S.18) 

(S.19) 

(S.20) 

(S.21) 

X exp [F(z)a+ - F(z)a). (S.22) 

We note that W is not unitary, although the part 

exp [F(z)a+ - F(z)a] is. We will show later that if 
(J(p) is such as to yield CNN proportional to N!, we 
retrieve the standard continuous representation. 

7. FURTHER GENERALIZATION 

It is possible to generalize continuous representations 
further by setting 

00 

Iz) = T(z) Lanrpn(z) In), (7.1) 
n~O 

where {!X n } is a suitably restricted sequence of numbers 
and T(z) is a function to be specified below. As before 
{rpn(z)} is an orthonormal system with respect to a 
domain D. Notice that T(z) need not be the weight 
function for the domain D. Then the inner product is 

00 

(z' I z) = T(z')T(z) I lan l
2 rpn(z)rpn(z'). (7.2) 

n~O 

The "completeness condition" reads 

L,z)(Z' dm 

= L nt IT(zW rpn(z)rpm(z) 1 n) (m 1 aniXm dm. (7.3) 

Ifthe domain is the unit circle, with rpn(z) = zn, 

n 

an = II [f(k)]-I, n ~ 1, a o = 1, 
'k~l 

and T(z) = A(z), we obtain the representation 
discussed by Lerner, Huang, and Walters.12 The 
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quantities A(z) andf(k) are defined in Ref. 12. Then 
(5.7) reads 

i~o i~:'Z)(Z' r dr de 

= 21TJo}] [f(k)]-2 f r(2n+1l IA(rW dr, (7.4) 

where the assumption IA(z)1 = A(lzl) is made. The 
important point here is that the functions zn used by 
Lerner et al. are orthogonal polynomials on a circular 
domain or a circular boundary. 

8. DISCUSSION 

The theory of kernel functions affords a mathe­
matical setup for the construction of new examples of 
continuous representations. In our case, the repre­
sentations Iz) are not obtainable from vacuum by a 
unitary transformation. However, we have explicitly 
constructed the non unitary transformations that 
relate Iz) to 10). We also noted an example where an 
attempt to build normalized Iz) was not compatible 
with the analyticity of the associated function space. 

In the case of infinite complex z plane, we have 
demonstrated the existence of further examples of 
continuous representations which contain the standard 
coherent states as a particular case. The physical 
applications for these new continuous representations 
are not evident at this time, though the boundedness13 

of A+ A might be of interest. 
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APPENDIX: ORTHONORMALITY 
OF THE SYSTEM (4.15) 

Consider the integral 

(1fJn' 1fJm) = Cn+1Cm+1 

1 
e(n+1) cosh-1 Ze(m+ll cosh-1 z 

X dx dy . -1 2 
Ellipse I smh cosh z I 

(A1) 
Let us introduce the transformation 

cosh-1 Z = W = U + iu (A2) 

or, equivalently, 
x = cosh u cos v, 

y = sinh u sin v. 

The area dx dy is transformed into du dv where 

dx dy = o(x, y) du du. 
o(u, v) 

(A3a) 

(A3b) 

(A4) 

Here o(x,y)/o(u, v) is the Jacobian of the transfor­
mations (A3a) and (A3b): 

o(x, y) = (sinh u cos V)2 + (cosh u sin V)2 
o(u, v) 

= Isinh w1 2
• (AS) 

Thus: 

( 111 111) = _lC C du dve,dn+m+2)e iv(n-ml l +lJ L" 1'n' 'I'm 2 n+l m+l . 
U=-lT '/)=-1T 

(A6) 

When n :rf= m, (6) vanishes becausef ~" eiv(n-m) dv does. 
When n = m, we have 

( ) - (C n+1)21+"d 2u(n+1l1"d 1fJn' 1fJm - ue v 
2 -lJ -tr 

(Cn+l)2sinh 2(n + l)a 
= - 21T = 1. (A7) 

2 (n + 1) 

We note that CA2) is the conformal mapping of twice 
the elliptic domain in the z plane over the rectangular 
domain, -a < u < a, -7T < V < 7T in the w plane. 
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The probability that two sites of a crystal lattice belong to the same cluster (the pair connectedness) is 
shown to play an important role in pereolation theory. Use of the linked-graph method to obtain low­
density series expansions leads to the discussion of topological invariants for rooted graphs. These are 
related .to the k-weig~ts which aros,e in.a previous investigation of the mean number of clusters. The 
mean sIze of clusters IS related to the paIr connectedness via sum rules. 

1. INTRODUCTION AND DEFINITIONS 

A discussion of the relevance of percolation theory 
to physics has been given in the review by Frisch and 
Hammersley.I We shall be more interested here in 
the graph theoretic aspects of the problem. 

The pair connectedness in percolation theory is the 
analog of the pair correlation function in statistical 
mechanics. Just as summation of the spin correlation 
function over all pairs of lattice sites gives the sus­
ceptibility of an Ising ferromagnet the same summa­
tion of the pair connectedness2 leads to the mean size 
of clusters.3 In the absence of exact results, high­
temperature series expansions of the susceptibility 
provide the most accurate determination of the Curie 
temperature.' The mean size of clusters has a similar 
strong divergence at the critical probability Po and 
this led Domb5 to suggest the use of low density 

If G = (V, E) is a linear graph with vertex set V 
and edge set E, then there is a possible state of the 
system for every subset V' of V, namely the one in 
which the vertices of V' are .occupied but those of 
V - V' are unoccupied. The assumption of independ­
ence means that the probability of occurrence of the 
state corresponding to V'is 

7T(V') = pIP'I(1 - p)IV-V'I. (1.1) 

The expectation value of any function of state A (V', G) 
is given by 

(A; G) = I 7T(VI)A(V', G); (1.2) 
V'S:;; V 

for example, the mean value of the occupation number 

{
I for iEV' 

Vi = 0 otherwise 
of the ith vertex is 

(1.3) 

expansions for its location. A fairly extensive study (Vi; G) = p. (1.4) 
of these expansions was made by Sykes and Essam6 It is also found that 
with the conclusion that useful information about 
the critical region can be derived by this method but (1.5) 

that the initial terms of the series are less regular than which is consistent with the assumption of inde­
those for the susceptibility. Our long term objective pendence. There is therefore no correlation between 
will therefore be to extend the mean size expansions particles on different vertices, as there would be if they 
via the pair connectedness and also to study the latter were interacting. 
in its own right. In the meantime a graph theoretic In the bond problem it is the edges of the graph 
interpretation of the coefficients in the expansion will (bonds of the lattice) which are occupied by particles, 
be given together with a prescription for finding the and the above description may be taken over by 
graph weights. replacing V by E. (Notice that occupied and un-

We begin by defining the functions of interest for occupied by a particle is just a way of thinking of the 
a finite linear graph with the idea of proceeding to the state of the vertex or edge, and we could equally well 
limit of uniform infinite lattice graphs7 for which the use spin up-spin down, black-white, open-closed, 
polynomials become infinite series. Two cases will depending on the application. I) The site .problem is 
be distinguished, the "site problem" and the "bond more general than the bond problem, since the bond 
problem." problem on any graph is isomorphic with the site 

In the site problem, particles are distributed over problem on its covering graph.? It is nevertheless 
vertices of the graph (sites of the lattice) subject to useful to retain the distinction since a covering graph 
the constraint of at most one particle per site. The is more complex than the graph from which it was 
particles are otherwise independently distributed, the derived (for example, the honeycomb covering lattice 
probability p of finding an occupied site being given. is the Kagome lattice) and also since some theorems 

874 



                                                                                                                                    

PERCOLATION PROCESSES. II 875 

which are easily formulated for the bond problem are 
more obscure (or may not ever be true) when tran­
scribed to the site problem. 

We have seen that the positions of the particles 
are uncorrelated, but just by chance they form 
clusters as a result of the restricted space. In the 
case of a crystal lattice, the proximity of two particles 
may be measured in the geometrical sense, but in the 
general problem on a graph it is indicated by the 
interrelation between vertices and edges. We define 
the connectedness indicator Yv.v' for two vertices 
v, v' E Vby 

(

1 if v, v' are connected by a 
Yv.v' = chain of occupied edges, (1.6) 

o otherwise. 

For the purpose of this definition, an edge is consid­
ered occupied in the site problem if both vertices it 
connects are occupied; in particular, v and v' must be 
occupied. The expectation value of Yv.v' will be called 
the vertex-vertex connectedness or, briefly, the pair 
connectedness. If v and v' are the same vertex, the 
expectation value is p for the site problem and unity 
for the bond problem. Two related quantities are 
Y •.• ' and Yv .• ; these are defined as in (1.6), but 
e, e' E E are to be terminal links of the chain. Their 
mean values will be known as the edge-edge and 
vertex--edge connectedness, respectively, and are re­
lated to the pair connectedness by 

(1.7) 
and 

(Y •.• ,; G) = p2(yv.v·; G~ .• ,), (1.8) 

where G~ and G~ .• , are the graphs obtained from G by 
contracting7 the edges e and e' to yield the vertices 
v and v'. Thus G~ and G~ .• , have one and two less 
vertices than G, respectively. 

It is convenient to define the pair connectedness of a 
two-rooted7 graph Gii, obtained from G by designating 
the vertices v and v' as root points, by 

(1.9) 

It was shown in Ref. 3 that, for the site problem, 

D(p; Gii) = ~ [c~; Gii]D(c~)pVm, (LlO) 
m 

where 

(1.11) 

Essentially this shows that, to obtain the coefficient of 
pn in the polynomial D(P; Gii), it is necessary to 
enumerate all connected two-rooted section graphs7 
eii of Gii with n vertices, each of which contributes 
D(eii), its strong pair connectedness weight, to the 
coefficient. The graph cji is the ith member of a list of 

connected two-rooted graphs no two of which are 
isomorphic. The list must be complete in the sense that 
every connected two-rooted section graph of Gii is 
isomorphic to some graph in the list, and [c~; Gii] is 
the number of such section graphs isomorphic with 
c~. The grouping together of isomorphic graphs in 
this way is of more value when working with an 
infinite lattice, and for this reason the square bracket 
quantities are called strong lattice constants.7 To 
complete the explanation of the above formulas, Vm 

is the number of vertices in c~, and F restricts C~i to 
be a section graph of c~ having full vertex perimeter.7 

Similarly, for the bond problem it was shown that3 

the pair connectedness, which is now distinguished by 
a bar, may be written 

D(p; Gii
) = ~(c~; Gii)d(c~)p'm, (1.12) 

m 
where 

d( c~) = 2: ( -1 )"m-'i( C}i; C~)F. ( 1.13) 
i 

These formulas are similar to those for the site 
problem, but the round brackets denote weak lattice 
constants (i.e., subgraphs are enumerated rather than 
section graphs); em is the number of edges in c~ and 
F denotes full edge perimeter.7 

Since every subgraph of a graph corresponds to 
a unique section graph with the same number of 
vertices (the one with the same vertex set), we may 
rewrite (1.10) in the form 

(1.14) 
m 

where d(c~) denotes the weak pair connectedness 
weight of c~. We notice that if eii is a connected 
two-rooted graph, then, when p = 1, the roots must 
be connected so that D(I; eii) = 1, which leads to a 
recursion formula for the d's, 

(1.15) 
m 

where the prime denotes omission of the term 
c~ = eii. For the bond problem, D(I; eii) = 1 so 
that from (l.l2) we see that d also satisfies (l.l5) and 
therefore 

d(c~) = d(c~), (1.16) 

which allows us to express the pair connectedness for 
both bond and site problems in terms of the weak 
weights. 

The strong weights are more useful than the weak 
weights for computational purposes on an infinite 
lattice, but the weak weights are of more interest 
from a graph-theoretic point of view since they are 
topological invariants of the graph (i.e., homeo­
morphic graphs7 have the same weak weight). The 
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latter property was established for the weak weights 
in the mean number expansion (k-weights) in the first 
paper of this series8 (subsequently referred to as I). 

If E' s; E is the set of occupied edges in a given 
state for the bond problem on a graph G = (V, E), 
then the mean number of clusters is defined by 

Ro(p; G) = (n; G), (1.17) 

where n(E', G) is the number of components in the 
subgraph G' = (V, E'). The zero subscript serves to 
remind us that isolated vertices of G' are counted as 
clusters (see I). In the site problem the mean number 
of clusters K(p; G) is defined similarly, but G' is the 
section graph of G defined by the subset V' ~ V of 
occupied vertices. In I it was shown that both mean 
number functions were determined by the weak 
k-weights 

( 1.18) 
m 

and 

(1.19) 
m 

although again for computational purposes it is more 
useful to use the strong lattice constant expansion 

(1.20) 
m 

in the case of the site problem. The properties of the 
mean number weights have been discussed in I, 
but subsequently the weak weights were investigated 
independently by Crap09 in the more general context 
of matroids. Two useful properties which were ob­
tained by Crapo but which did not appear in I are 

(1.21) 

(where GD is a dual of the planar graph G) and 

keG) = k(G~) - k(G~), (1.22) 

where G~ and G~ are the graphs obtained from G by 
contracting and deleting the edge e of G. The deletion 
of an edge from a connected graph may separate it 
into one or more components. In I the k-weights were 
defined for connected graphs only, but for a general 
graph we adopt the definition7 

I keG') = neG), 
E'r;;E 

where G' = (V, E'). This relation may be inverted to 
yield 

keG) = I (_I)IE-E'ln(G'). (1.23) 
E'r;;E 

If the number of components neG) in G is greater than 
one, the k-weight is zero unless all but one of the com­
ponents are isolated vertices. When G is the trivial 

graph with n vertices but no edges, (1.23) shows that 
k = n. For the graph G with one arbitrary connected 
component C and n - I isolated vertices, we find 
keG) = k(C). Combining these results, we see that the 
definition of k for connected graphs may be written 
(in agreement with I) as 

I' k(C') = -reG), 
C'r;;G 

where C' is a connected subgraph of G, the rank 
reG) = I VI - neG), and the prime on the sum indi­
cates omission of subgraphs with one vertex. By using 
k rather than ~ = Ikl, as in Crapo's work, we see that 
Eq. (1.22) holds for any edge including loops. 

The main result of this paper is to relate the mean 
number and pair connectedness weights. Theorems 
are then developed which enable the pair connectedness 
weights of a general two-rooted graph, and hence the 
mean number weights, to be expressed in terms of the 
pair connectedness weights of the elementary7 two­
rooted graphs. This work parallels that of Van 
Leeuwen, Groeneveld, and de Boer10 on the pair 
correlation in an imperfect classical gas. The tech­
nique used is to develop theorems for the mean 
number and pair connectedness functions and then 
use the following proposition. 

Proposition 1: Consider the weight factors in the 
weak and strong lattice constant expansions of the 
function (A; G). The weak weight of a graph g is 
the coefficient of pe(g) in the polynomial (A; g) for 
the bond problem, and the strong weight is the 
coefficient of pV(g) in the same polynomial for the site 
problem. 

This results from the fact that the only subgraph of 
g with e(g) edges is g itself and the only section 
graph with v(g) vertices is g itself. The proposition 
was used in I, and as a further example of its use we 
note that (1.22) follows from the result of Kasteleyn 
and Fortuinll for the bond problem 

(n; G) = p(n; G~) + (1 - p)(n; G~). (1.24) 

The above authors also note that (1.24) is valid for the 
bond problem pair connectedness, and so 

(1.25) 

The rest of the paper is broken down as follows. 
Section 2 is concerned with the site problem, Sec. 3 
deals with modifications required for the bond 
problem, and Sec. 4 relates the mean size of clusters 
to the pair connectedness. In the latter section the 
mean-size weight factors which, even in the weak case, 
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are not topological invariants are expressed as a sum 
over the pair connectedness weights for .all possible 
two-rootings. 

2. SITE PROBLEM 

A. Pair Connectedness 

In general, the pair connectedness D(P; Gii
) is a 

polynomial of degree V (Gii) , but under certain con­
ditions some of the coefficients vanish. The most 
obvious case is when the roots are adjacent. In this 
case D(p; Gii

) = p2, and, applying Proposition 1, 
we have our first theorem. 

Theorem 1: If Gii is a two-rooted graph with three 
or more vertices and adjacent roots, then the strong 
pair connectedness weight is zero [i.e., D(Gii) = 0]. 

Clearly, if D n is the coefficient of pn, then 

Dn = 0 for 0 ~ n < Vmin' (2.1) 

where Vmin is the number of vertices in the shortest 
chain connecting the roots of eii . A more useful 
result for the computation of weight factors is the 
following: 

Dn = 0 for Vmax < n ~ v(Gii
), (2.2) 

where vmax is the number of vertices in the maximal 
I-irreducible7 two-rooted subgraph Sii of Gii. This 
results from the fact that the connectedness of the roots 
of eii is unaltered by changing the state of occupation 
of vertices not in Sii, and so D(p; Gii) = D(p; Sii). 

If eii itself is I-irreducible, then we learn nothing 
about the polynomial from (2.2), but it may still be 
that D(p; Sii) has degree less than V(Sii). The charac­
teristic of a I-reducible two-rooted graph is that 
either it is not connected or, if it is connected, then 
there must be at least one articulation point (vertex, 
the deletion of which separates the graph into two or 
more components at least one of which has no roots). 
A I-irreducible graph may still have an articulation 
set V", of higher order, and, if there is such a set, the 
corresponding section graph of which is complete, 
then (2.2) may be generalized. Suppose that S~ is the 
maximal two-rooted section graph of Sii having no 
such articulation set; then D(p; Sii) = D(p; S~). If V", 
contains both roots, the result is trivial, but otherwise 
it follows by the previous argument that the occupa­
tion of vertices not in S~ is irrelevant to the connec­
tedness of the roots. Thus (2.2) holds with vmax equal 
to the number of vertices in S~. Using Proposition 1 
now leads to the following theorem. 

Theorem 2: If Gii is a two-rooted graph which 
either is disconnected or contains an articulation set 

the section graph of which is complete, then its 
strong pair connectedness weight is zero. 

In calculating strong pair connectedness weights, 
we are thus led to consider only I-irreducible graphs, 
and even some of their weights may vanish by the 
above theorems. In a case where the weight is not 
expected to be zero, it is still possible to simplify the 
calculation if the graph may be formed by series­
parallel combination of smaller graphs. 

If Sii is the I-irreducible two-rooted graph ob­
tained by identifying the roots of the graphs sif and 
S~i (i.e., connecting them in parallel), then 

I - p-2D(p; Sii) 

= [1 - p-2D(p; S~i)][l - p-2D(p; S~i)]. (2.3) 

This is true since r2D is the probability that if the 
roots are occupied, then there is a chain of occupied 
vertices between the roots. The probability that there 
is no such chain is the product of the probabilities of 
no chain for each of the parallel components. The 
equation is trivially satisfied when the roots of 
either component are adjacent. A composite graph7 

C has at least two parallel components, but the root 
points are not adjacent. By repeated factorization and 
use of Proposition 1, it is possible to express the 
weight of a composite graph as a product over the 
weights of its simple7 components. If C is the parallel 
combination of n simple two-rooted graphs Sl' ... , 
Sn' then 

n 

D(C) = (_l)n+1 IT D(St). (2.4) 
t=l 

The pair connectedness of a simple graph may be 
further factorized if it has a vertex through which all 
paths between the roots must pass. Such a vertex is 
called a nodal point; a simple two-rooted graph with 
one or more nodal points is called nodaf.7 Nodal 
graphs can thus be formed by series combination of 
smaller graphs. If Sii is a I-irreducible two-rooted 
graph obtained by series combination of Sti and S~i, 
then 

D(p; Sii) = p-1D(p; S~i)D(p; S~i). (2.5) 

The strong pair connectedness weight of a nodal graph 
X, which is the series combination of n nonnodal 
graphs Sti , ... ,S~, may be written, by repeated use 
of (2.5) and then Proposition 1, as 

n 

D(X) = IT D(S;i). (2.6) 
t=l 

If the nonnodal graph S;i is simple and therefore 
elementary,7 no further reduction is possible, but, if 
it is composite, (2.4) may be applied again. Finally, 
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n en D(en) d(en) n en D(en) d(en) 

1<1> -I +2 6~ 0 -3 

2<1> 0 +2 7W -I -3 

3{] -I +2 8~ 0 +4 

4~ 0 -2 9c$ +1 +4 

5W 0 -2 lOA +1 -6 

FIG. 1. Pair connectedness weights for the elementary 
graphs with four and five vertices. 

if it has a root-connecting edge or multi-edge, it 
contributes a factor p2 to the pair connectedness and 
hence a factor of zero to the strong weight unless it is 
just a two-rooted multi-edge, in which case it con­
tributes a factor of one to the weight. By repeated 
application of (2.4) and (2.6) the weight of any 
graph may be written, apart from a sign, as the prod­
uct of the weights of its elementary constituents. 
These weights for graphs with five or less vertices are 
given in Fig. I. 

B. Relationship between the Pair Connectedness 
and Mean Number 

Consider graphs Gii and Gn , where Gii is obtained 
by rooting two vertices of a graph G, and G n is 
obtained by connecting the same vertices of G by a 
chain of n edges. It will be shown that 

K(P; Gn) = K(p; G) + (n - I)p - np2 

+ pn-lD(p; Gii) for n ~ 1. (2.7) 

As a first step we establish the result for n = 1 which 
involves finding the change in mean number when two 
vertices of G are connected by an additional edge. 
The only case in which a change occurs is when both 
roots are occupied but do not already belong to the 
same cluster. This happens with probability p2 -
D(P; Gii) and reduces the number of clusters by one. 
Hence (2.7) is true with n = 1. Suppose now we wish 
to go from n = 1 to n = 2 by insertion of an addi­
tional vertex. The number of clusters is increased by 
one if either 

(i) the inserted vertex is occupied and both roots are 
unoccupied [probability p(1 _ p)2] 

or 

(ii) the inserted vertex is unoccupied, the roots are 
both occupied and do not belong to the same 
cluster on G {probability (I - p)[p2 - D(P; Gii)]), 

but is otherwise unchanged. Thus 

K(P; G2) = K(p; G1) + p(1 - p) - (I - p)D(P; Gil) 

(2.8) 

and applying this result taking G to be G n-l with one 
edge deleted from the chain 

K(P; Gn) = K(P; Gn - l ) + p(1 - p) 

- (l - p)pn-2D(p; Gii) for n ~ 2. (2.9) 

Iterating (2.9), we find 

K(P; Gn) = K(p; Gl ) + (n - l)p(1 - p) 

- (l - pn-l)D(p; Gii) for n ~ 1, (2.10) 

which together with the result for n = 1 establishes 
(2.7) for n > 1. In fact, (2.7) holds for n = 0, but the 
proof is omitted. 

U sing Proposition I, we find, from (2.7) the 
following relationships involving the strong K-weights: 

K(Gl) = K(G) + D(Gii) for v(G) > 2, (2.11) 

K(Gn) = D(G ii
) for n ~ 2 and v(G) > 2. 

(2.12) 

From (2.12) it follows that the strong mean number 
weights are independent of the number of edges in a 
given bridge7 provided that there are at least two. 

Combining (2.11) and (2.12) results in the following 
relation between K-weights: 

K(Gn ) = K(Gl) - K(G) for n ~ 2 

e.g., 
and v(G) > 2 (2.13) 

K (Q])~K(<D)-K(a) 

-1 = ° - +1 

In practice, strong pair connectedness weights are 
determined by breaking down the graph into its 
elementary constituents and then using (2.11) or 
(2.12) to determine the weights of the elementary 
graphs from a list of K-weights. Such a list will 
eventually be much shorter than a list of pair con­
nectedness weights since there are far more two-rooted 
graphs. Equations (2.11) and (2.12) are sometimes 
useful in hand computation of K-weights as is (2.13). 

3. BOND PROBLEM 

This section runs parallel to the previous section, 
and for this reason detailed arguments will not al­
ways be given. Formulas for weak pair connectedness 
weights will be obtained via the bond problem 
functions and Proposition 1, but, as we saw in the 
Introduction, they also determine the site problem 
pair connectedness. 
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A. Pair Connectedness 

Theorem 1 is no longer valid for weak weights, and 
Theorem 2 holds only for disconnected graphs and 
graphs with articulation sets of order one. This is 
because even when Gii has an articulation set V", of 
order greater than two corresponding to a complete 
section graph, the vertices of V", can be connected 
either directly by an occupied edge or indirectly by a 
chain of occupied edges which lies outside S~. The 
latter edges are therefore relevant to the connectedness 
of the roots in the case of the bond problem. 

Equation (2.3) takes on a simpler form for the 
bond problem since the occupation of the roots need 
not be considered: 

1 - D(p; Sii) = [1 - D(p; S~i)][1 - D(p; S~i)]. 

(3.1) 

Adjacent roots no longer give a trivial result so that 
we now consider the factorization of the weak weight 
of a ladder graph7 C, which is similar to a composite 
graph, but the roots may be connected by a multi-edge. 
If e is the mUltiplicity of the multi-edge, it contributes 
a factor (1 - p)" to 1 - D and so 

n 
deL) = (_l)"+n+1 II d(8 t ), (3.2) 

t=l 

where C is the parallel combination of n simple graphs 
and e edges. In particular a two-rooted multi-edge 
of multiplicity e has weak weight (_1)e+1. 

The rule for series combination is also very simple, 
that is, 

D(p; Sii) = D(p; S~i)D(p; S~i). (3.3) 

Using Proposition 1, we may write the weak weight 
of a nodal graph oN' as the product of the weights for 
its nonnodal constituents: 

n 

dCoN') = II d(s:i). (3.4) 
(=1 

The nonnodal graphs this time fall into three classes, 
elementary, ladder (includes multi-edge of multi­
plicity two or more), and single edge with two roots 
(contributes a factor of unity). The ladder graph 
contributions may be further factorized using (3.2) 
and, as before, repeated use of (3.2) and (3.4) enables 
the weight of any graph to be expressed as a product 
of the weights of elementary graphs, the first few of 
which are listed in Fig. 1 beside the strong weights. 

B. Relationship between the Pair Connectedness 
and Mean Number 

The basic formula is almost the same as (2.7): 

Ko(p; Gn) = Ko(P; G) + (n - 1) - np + pnD(p; Gii) 

for n ~ O. (3.5) 

The case n = 0 is easily proven since Go is formed by 
identifying the roots of Gii and a cluster is lost when­
ever the roots of Gii are not already connected by a 
chain of occupied edges [probability 1 - D(P; Gii)]. 
The result 

Ko(P; Gn ) = Ko(P; Gn_1) + (1 - p) 

X [1 - pn-1D(p; Gii)] , (3.6) 

which allows the length of the chain to be increased, 
follows from the fact that insertion of a new link only 
changes the mean number if it is unoccupied and 
then only if its incident vertices are not already con­
nected through the rest of the graph [probability 
1 - pn-1 D(P; Gii)]. Iteration of (3.6) yields 

Ko(P; Gn) = Ko(P; Go) + n(l - p) 

- (1 - p")D(P; Gii) for n ~ 0, 

(3.7) 

which together with the result for n = 0 establishes 
(3.5) for general n. 

Using Proposition I on (3.5) gives the basic rela­
tion between the weak mean number and pair con­
nectedness weights 

d(Gii
) = k(Gn) for e(Gii) ~ I and n ~ 1. 

(3.8) 

Since (3.8) is true for all n, the k-weights of homeo­
morphic graphs are equal (see also I), and con­
sequently the same equation implies that d(Gii) is 
also a topological invariant of Gii. Theorem IV of I 
also follows from (3.8) and the previous result that 
d(G ii

) is zero unless Gii is I-irreducible. As an example 
of (3.8), we have 

d(<j»= k (A) = 2. 

C. Generalization of the Contraction-Deletion Rule 
(1.23) and the Effect of Edge Substitution on 

Weak Weights 

Consider the graph 

obtained from G by replacing the edge e of G by the 
two-rooted graph Gr. A simple, but nevertheless 
useful, extension of (1.24) is 

K(p; Ge-+G1ii) 

= D(p; G~i)K(p; G!) + [1 - lJ(p; G~i)]K(p; G~). 

(3.9) 
Using Proposition 1, we find 

k(Ge-+Glli) = d(G~i)[k(G~) - k(G~)] 

= d(G~i)k(G), (3.10) 
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where we have used (1.22) to introduce keG). Thus the 
effect of replacing an edge of G by G~ is to multiply 
the weak k-weight by the weak pair-connectivity 
weight of Gii. This together with (3.8) enables the 
k-weight of any 2-reducible graphs to be expressed 
in terms of the k-weights of graphs with fewer vertices. 
A similar result is valid for the pair connectivity, 
namely 

D(p; G!~Glil) 
= D(p; Gii)D(p; G!i y) + [1 - D(p; Gii)JD(p; G!i~), 

(3.11) 
which leads to 

(3.12) 

For example, graphs 2, 3, 4, and 5 in Fig. I are 2-
reducible. The d-weights of 2 and 3 may be obtained 
from 1 by replacing an edge by a chain of length two. 
Similarly replacing the edges of 1 by a two-rooted 
triangle, for which d = -1, yields the d-weights of 
4 and 5. Finally, by taking Gr in (3.10) and (3.12) to 
be a two-rooted double bond,7 for which d = -1, 
we find that doubling an edge changes the sign of the 
weak weights. 

4. THE MEAN SIZE OF CLUSTERS AND 
HIGHER MOMENTS 

A. Definitions 

The mean number of clusters was defined in (1.17) 
as the mean number of components in the graph G', 
which is either the subgraph defined by the occupied 
edges or the section graph defined by the occupied 
vertices depending on the problem. We now define 
moments of the cluster size distribution by 

(4.1) 

where ei and V; are the numbers of edges and vertices 
in the ith component of G'. The bond problem 
moments are denoted by Mrs. Clearly Moo is the mean 
number of clusters previously discussed. MOl and M IO 
are the mean number of vertices and edges respec­
tively, and are simple functions 

MOl = 1 VI p, MIO = lEI p2, 

MOl = lVI, M lo = IElp· (4.2) 

The second moments yield various measures of 
the mean size of clusters. If the size of a cluster is 
defined by vertex content, then we may either choose 
a vertex, calculate the mean size of clusters containing 
that vertex, and average over all vertices, which gives 

(4.3) 

or choose an edge, calculate the mean size of clusters 
containing that edge, and average over all edges, 
which gives 

(4.4) 

Alternatively, it may be useful to measure size by edge 
content, in which case the two methods of computa­
tion yield 

1 VI-1 M ll (p; G) and IEI-1 M 20(p; G), (4.5) 

respectively. To establish contact with previous 
notation,S 

and 
S(p)S = M02(p; G)/MIO(p; G) 

S(p)B = M2o(p; G)/M10(p; G). 

B. Relationship between Mean Size and Pair 
Connectedness 

(4.6) 

(4.7) 

It was shown in Ref. 3 that S(p t could be expressed 
as a sum over the pair connectedness. This sum rule 
may be generalized to all second moments for site 
and bond problems. The essential observation is that 

2: Y".v' = 2: vlv; - 1), (4.8) 
v,v'Ef1" i 

V=F-V' 

which when averaged gives 

Moz(p; G) = M01(p; G) + 22: D(p; G!i), (4.9) 
t 

where the sum is over all two rootings of G. Similarly, 

so that 

2: Yv.e = 2: viei , 
'VEV i 
eEE 

Mu(p; G) = 2: (Yv.e; G) 
VEV 
eEE 

I), e 

(4.10) 

(4.11) 

(4.12) 

which is again a sum over the pair connectedness, 
and finally 

M 20(p; G) = Moo(p; G) + 2: (Ye.e'; G) (4.13) 
e.e'eE 
e=ft.e' 

= M10(p; G) + p2 I (Yv.1!" G~.e')' (4.14) 
e.e'eE 
e'#:-e' 

All the above equations hold for the corresponding 
bond problem quantities. 

The equations may be generalized to higher 
moments; for example, 

Moa(P; G) = MOl(p; G) + 62: D(P; Gii
) 

+ 62: D(P; Giii) (4.15) 
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and lattice constants. Thus 

M04(p; G) = M01(p; G) + 14l D(p; Gii
) Mr.(P; G) = l (ct; G)mr.(ct)pV

, (4.23) 

+ 36 I D(p; Giii
) + 24':2 D(p; Giv

), and 

(4.16) MrlP; G) = :2 (ct; G)mrs(ct)pe
,. (4.24) 

where D(p; Gin) and D(P; GiV
) are the connectedness 

functions appropriate to three- and four-rooted graphs Now for a connected graph C we have 

and the sums are over all possible rootings. Mr.(l; G) = Mr.(l; G) = lEI' IVl s, (4.25) 

C. Graphical Expansions 

1. Strong Lattice Constant Expansion 
for the Site Problem 

Substitution of (LlO) in (4.9) provides a graphical 
expansion for M02 (P; G): 

Moo(p; G) = IVI P + 2 !! [c~; G!i]D(c:;')pVm 
t Tn 

(4.17) 

(4.18) 

where in going from (4.17) to (4.18) we have grouped 
together contributions from c~ which are isomorphic 
with c, when the roots are ignored. By applying 
Proposition 1, the weight functions may be related 

(

2! D(G!i) for IVI > 1 
M 02(G) = t • (4.19) 

1 for IVI = 1 

The sum over rootings in (4.19) is more conveniently 
replaced by a sum over I-irreducible two-rooted 
graphs no two of which are isomorphic: 

M02(G) = 2l «S:i; G»D(S~i) (4.20) 
t 

where «S\i; G» is the number of rootings7 of G iso­
morphic with S\i. A similar analysis of Mll and M 20 
via Eqs. (4.12) and (4.14) gives the following expres­
sions for the strong weights: 

where Hji is obtained by rooting any vertex and any 
nonincident edge of G and then contracting the edge. 
We have 

M20(G) = 22: DCH;i) for I VI> 3, (4.22) 
t 

where Hji is obtained by choosing a pair of non­
incident edges of G and contracting. Each pair is 
counted once only. 

2. Weak Lattice Constant Expansions 
for Site and Bond Problems 

Following the arguments of I, we may expand the 
moments for site and bond problems in terms of weak 

and so in analogy with (1.15) we obtain the recursive 
definition of the site-problem weak weights 

mrsCC) = lEn VIs - I' (c t ; C)mrs(ct)· (4.26) 
t 

Clearly, lnTs (C t) satisfies the same equation, and so 

(4.27) 

There is therefore only one set of weak weights to be 
determined, and these will be derived from bond 
problem formulas together with Proposition 1. 
Substitution of (1.12) into the barred versions of (4.9), 
(4.12), and (4.14) enables the relations 

m02(G) = 2 I d(G;i) for lEI> 2 (4.28) 

ml1(G) = I d(H;i) for lEI> 1, (4.29) 

and 

(4.30) 

to be obtained; e.g., 

m20(<t-J= 2 x 2 x d (e) 

= 4. 

The sums in (4.29) and (4.30) are over the same 
graphs as in (4.21) and (4.22). 

5. CONCLUSION 

The pair connectedness, which is an interesting 
concept in its own right, has been shown to provide 
an important link between the previously discussed 
concepts of mean number and mean size. It is hoped 
that the formulas of Sec. 4, which relate the mean 
size weights to the pair connectedness weights and 
hence to the mean number weights, will enable a sig­
nificant extension of the mean size expansions to be 
made. 

* Work performed under the auspices of the u.s. A tomic Energy 
Commission. 
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We consider the relationship between the discrete reduction of SO(3, 2) with respect to SO(3, I) 
and the singleton reduction of SO(3, 2) with respect to SO(3) ® SO(2). 

INTRODUCTION 
The unitary irreducible representations (VIR's) of 

S = SO(3, 2) [SO(p, q) denotes the universal covering 
group of SO(p, q)] have been considered in Ref. I for 
those VIR's which have a singleton reduction with 
respect to its maximal pseudocompact subgroup 
K = SO(3) ® SO(2). [A singleton reduction of a 
representation of group with respect to a subgroup 
means that each irreducible representation of the 
subgroup occurs once only in the reduction.] These 
will simply be referred to as singleton VIR's. 

However, for many physical applications, we are 
interested in S, for example, because it contains L+, 
the covering group of the proper Lorentz group 
[L+.::::: SO(3, I)J, as a subgroup. It therefore becomes 
useful to know the reduction of representations of S 
with respect to L+. This has been done by the author2 
for unitary and nonunitary irreducible representations 
of S with a discrete singleton reduction with respect 
to L+ ' which we shall refer to as the "discrete Lorentz" 
representations of S. 

We arrive at the remarkable result that all the dis­
crete Lorentz VIR's are nothing but singleton repre­
sentations [i.e., with a singleton reduction with respect 
to K). There is no a priori reason for supposing that 
this should be so. 

We thus independently arrive at many of the single­
ton VIR's obtained by Ehrman. In fact, we obtain 
all those singleton VIR's in which for each value of 
the angular momentum the eigenvalues of the genera­
tor of So (2) , r o, are bounded. 

There is reason to believe that a discrete reduction 
of VIR's of S with respect to L+ must of necessity be a 
singleton reduction.s If this is correct, then we have 
considered all VIR's of S with a discrete reduction 
with respect to L+. It follows that all other VIR's of S 
have a nondiscrete reduction with respect to L+. 
Hence, all the nonsingleton VIR's of S do not 
have a discrete reduction with respect to SO(3, I). 
This applies also to those singleton representations 
in which r 0 has an unbounded spectrum of eigen­
values within each angular momentum subspace. 

The discrete reduction of the VIR's of Swith respect 
to L+ is quite simple. We give a brief review of this. 
(The complete analysis can be found in Ref. 2, which 
includes nonunitary representations as well.) The 
bases of the representation spaces of the restricted 
class of irreducible representations we thus obtain are 
diagonal with respect to the Casimir operators of L+ . 
We effect a similarity transformation which takes this 
"Lorentz" basis into a "maximal compact" basis that 
is diagonal with respect to the Casimir operators of K, 
and determine the spectrum of eigenvalues of r 0 in 
each subspace with definite angular momentum. This 
determines the reduction with respect to K. This 
procedure is in many ways simpler than a direct 
determination of the reduction as in Ref. I. 

Class lI(c) and V representations (see text) are the 
Majorana representations. 

Class IV(a) and IV(b) representations (see text) 
provide a nautraJ generalization of the finite non­
unitary Dirac representation to unitary representation 
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for half-integral and integral spin, respectively. The 
Dirac representation has the following reduction with 
respect to K: 

[-t, t] - [t, t], 

where [j, p;] indicates a representation of SO(3) ® 
SO(2), j being the angular momentum [i.e., SO(3) 

label], and p; is the value of r 0 [i.e., the SO(2) label]. 
[j, p;] -- [j', p;'] indicates that the representations 
[j, p;] and [j', ,u'] are "interlocked"-i.e., JOi has 
nonzero matrix elements connecting these representa­
tions. 

Class IV(a) representations have the following 
reduction: 

[-t, t]-[t, t] 

/ >< ~ 
[-t, t]--[-t, t]--[t, t]--[t, t] / X X X ~ 

[-t, t]--[ -t, t]--[ -t, t]--[t, t]--[t, t]--[t, t] 

/ >< >< ><><><~ 
etc. 

Unlike the Dirac representation this contains all half-integral spins. 
Class IV(b) representations have the following reduction: 

[0,0] 

/ ~ 
[-1,1]-[0,1]-[1,1] 

/ >< X ~ 
[-2,2]-[-1,2]-[0,2]-[1,2]-[2,2] 

/ >< X><><~ 
etc. 

This representation is a natural counterpart for 
integral spin of the above representation. 

and Jap = -Jpa , <X, f3 = 0, 1,2, 3, 4, are the genera­
tors. 

It may be useful to investigate these as representing 
infinite towers of particles with the same internal 
quantum numbers, but different spin.4 

For these two classes of representations, we deter­
mine the expansion coefficients of the similarity 
transformation connecting the Lorentz and maximal 
compact bases. We also determine explicitly the 
matrix elements of all the generators on both these 
bases. 

1. COMMUTATION RELATIONS 

The Lie algebra of S = SO(3, 2) is given by the 
following commutation relations: 

[J"p, Jy~] = i(g,,6Jpy + gpyJ"o - gayJpo - gPoJ"y), 

where the metric g"p is given by 

gap = 1 

= -1 

=0 

for <X = f3 = ° or 4, 
for <X = f3 = 1, 2, 3, 

otherwise, 

If we make the identification 

we obtain 
r/t = J/t4, p;=0,1,2,3, 

[J/tV, Jpa] = i(g/JaJvp + gvpJ/Ju - g/JpJva - gvaJ"p) , 

(la) 

W", J pa] = i(g/tpra - g"urp), (lb) 

(lc) 

where the range of the indices fl, v, p, and (J is 0, 1, 
2, 3. 

J/tv are the generators of the proper Lorentz group 
and r /J is a Lorentz vector, its vector properties being 
defined by (b). Relation (c) is one of the simplest to 
close the Lie algebra with only JIlV and r Il as basis 
elements. 

2. LORENTZ BASIS 

The Casimir operators of SO(3, 2) are 

D- - 1J Jap 
1 - -2 "p , 
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where Wa = !€aP1d.J{JYJo<. The range of the indices is 
0, 1,2,3,4, and €«{Jyo< is the antisymmetric tensor with, 
€01234 = + 1. Hence we obtain 

where 

(2a) 

(2b) 

[;1 = tJ".J"v, (~a) 
[;2 = i€"vp"J"V JP'r, (3b) 

W" = t€"vp"rPf", (4) 

and €"vp" is the Levi-Cevita tensor with €0123 = + I. 
[;1 and [;2 are the Casimir operators of L+, and an 

irreducible representation of L+ is characterized by 
(k, c), where 

C1 = k 2 + e2 - 1; C2 = ike 

are the eigenvalues of [;1 and [;2 respectively. \k\ 
specifies the minimum value of the angular momentum 
in the reduction of (k, c) with respect to SO(3). Note 
that (k, c) and (-k, -c) specify the same irreducible 
representation. 

The eigenvalues Dl and D2 of 151 and 152 are not 
sufficient in general to label an irreducible representa­
tion of S. We need additional labels, Do say, and 
label the representation by D = (Do, D1 , D2)' 

An irreducible representation D of S generates 
ipso facto a representation 7(D) of L+, obtained by 
restricting ourselves to those operators which corre­
spond to L+ transformations. We consider those 
representations of S in which 7(D) can be decomposed 
into a direct sum of irreducible representations 7 ·of 
L+, each 7 occuring once only in the reduction (such 
a reduction will be called a singleton reduction with 
respect to L+). If 7 is a component of the decomposition 
of 7(D), we shall write 7 E D. 

We decompose 7 in the usual fashion5-7 with respect 
to the rotation group and obtain ID 7 jm) as a basis of 
the representation space of 7, where j(j + 1) and m 
are the eigenvalues of J2 = tJijJij, i,j = 1,2,3, and 
J3 = J12 , respectively. We put7 = (k, e)in accordance 
with the labeling defined above. 

The basis \D 7 jm) extends to a basis of D. If 7(D) 
has a nondiscrete reduction into irreducible repre­
sentations of L+ , then the action of f'J on the Lorentz 
basis ID 7 jm) will be singular, and we cannot use the 
usual infinitesimal approach used below. (See the 
introduction of Ref. 2.) We, therefore, restrict our­
selves to those VIR's of S with a discrete singleton 
reduction with respect to L+ . 

We can, hence, write the action of fo in a well­
defined fashion as 

fo I D 7 jm) = 2: 1 D T' jm){7' 17)j, (5) 
,'ED 

where we have used the fact that fo is a rotation 
scalar operator. The coefficients (7' I 7)j depend on D, 
but for notational convenience we omit this depend­
ence. 

From the Lorentz vector properties (l b) of f", 
we obtains.7 for (k, c) E D 

(k' e' , ke)j = 0 unless (k', e') == (k ± 1, c) or 

(k', e') == (k, e ± 1), 
where 

(k', e') == (k, c) iff (k', e') = ±(k, c). 

The j dependence of (7' I 7)1 is given by 

(k ± I, e I ke)j 

= (k ± I, e I ke)[(j =F k)(j ± k + 1)]i, (6a) 

(k, e ± 1 I ke)j 

= (k, e ± 11 ke)[(j =F e)(j ± e + l)]i. (6b) 

We introduce a notation for (7' I 7) SO that we can 
write 

fo ID kejm) 

= a+(e, k + t)[(j - k)(j + k + l)]i ID k + 1 e jm) 

+ a_(e, k - t)[(j + k)(j - k + I)]! IDk - 1 ejm) 

+ b+(k, e + t)[(j - e)(j + e + I)]! IDk e + Ijm) 

+ bjk, e - t)[(j + e)(j - e + I)]! ID k e - 1 jm). 

(7) 

Since we are considering unitary representations, we 
have that 

a+(e, k ± t) = a!(e, k ± t), 
b+(k, e ± !) = b~(k, e ± !) 

for r I' to be self-adjoint. 
If 7 E D and (7' I 7»)' :;i: 0 for some j, then 7' ED. 

For a unitary representation we also have <7 I 7')i :;i: O. 
We shall say that 7 and 7' interlock and depict this by 

, 
7--7. 

Furthermore, (see Ref. 2, Theorem 4) we can choose 
a phase convention for the basis ID ke jm) so that 

a±(e, y) = aCe, y), b±(k, y) = b(k, y). 

Hence, aCe, y) and b(k, y) from the unitarity condition 
are real, and we can choose the phase for the basis so 
that they are nonnegative unless (k, c) is (t,O) or 
(0, t). In the latter case a(O, 0) < 0 and a(O, 0) > 0 
define inequivalent representations in which (t,O) is 
self-interlocking, and b(O, 0) < 0 and b(O, 0) > ° 
define inequivalent representations in which (0, t) is 
self-interlocking. 

3. UNlTARITY 

If (k, c) E D, then, since (k, c) is unitary, we have 
the following two possibilities: 
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(i) (k, c) is a main series representation; i.e., e is 
pure imaginary and k is any integral or half-integral 
number; 

(ii) (k, c) is a supplementary series representation; 
i.e., k = ° and e is real with lei ~ l. 

We see from (7) that we cannot have the trivial 
representation of L+, i.e., (0, 1), in D. Since j = ° is 
the only value of j in this representation, (0, 1) can 
only interlock with (0,2). However, (0,2) is nonunit­
ary, and hence (0, 1) does not interlock with any other 
representation for a unitary representation of SO(3, 2). 
Since D is irreducible, (0, 1) is the only component in 
the reduction, and we hence have r I' = ° which vio­
lates relation (Ic). 

Case (i): If (k, c) E D with e pure imaginary and 
(k, c) ¢ (0,0), we can only have (k ± 1, c) interlock­
ing with (k, c). 

If (0,0) E D, since (0, 1) == (0, -1) cannot belong 
to D, we can only have this interlocking with (1,0) == 
(-1,0). 

Hence, for these cases we can write 

ro ID k ejm) 

= aCe, k + t)[(j - k)(j + k + 1)]t ID k + 1 ejm) 

+ aCe, k - t)[(j + k)(j - k + l)]t ID k - 1 ejm). 

(8) 

Case (ii): If (0, c) E D and e is real with e ¢ ° and 
lei ~ 1, then we can, without loss of generality, take 
1 > e > ° (e = 1 gives the trivial representation). 
So the only interlocking we have is 

(0, c) - (0, e - 1). 

We see that we can write this as 

(0, t + ,u) - (0, ~. - ,u) 

with t > ,u ;;::: ° and 

r 0 I DOt ± ,u jm) 

= b(O, ±,u)[(j + t + ,u)(j + t - ,u)]t 

X ID 0 i ::r= ,ujm). (9) 

4. REDUCED MATRIX ELEMENTS 

In order to determine the reduced matrix elements 
aCe, y) and b(k, y), we use the relation (Ic). However, 
the calculations are much simplified by using commu­
tation relations involving the Casimir operators l'\ 
and C2 : 

[ro, [1'0' C\]l = 2(1'~ - J2 + 2C1 + D1), (10) 

(ll) 

In case (i) we obtain 

[(k + l)a(e, k + t)2 - (k - l)a(e, k - W - t] 
X j(j + 1) = k(k + 1)2a(e, k + W 
- k(k - 1)2a(e,k - W - (k2 + e2 - 1) - tD1 , 

(12) 
j(j + l)e[a(e, k + W - aCe, k - W] 

= ke[(k + l)a(e, k + W 
- (k - l)a(e, k - t) - tJ. (13) 

(12) and (13) follow from (10) and (11), respectively. 
In case (ii) we obtain 

j(j + 1)[(1 ± ,u)b(O, fl)b(O, -fl) - 1] 

= (,u2 - t)(1 ± fl)b(O, ,u)b(O, -flY 

- 2[,u2 ::r= ,u - !] - Dl · (14) 

Relation (11) reduces to a tautology here. 
Since we are dealing with unitary representations 

and the trivial case (0, 1) E D is excluded, j assumes 
more than one value (indeed, infinitely many) in 
(k, c), and in case (i) we must have 

(k + l)a(e, k + t)2 - (k - l)a(e, k - W = t, (15) 

c[a(e, k + W - aCe, k - W] = 0, 

tDl = (1 - k2 - c2) + k[(k + 1)2a(e, k + t)2 

- (k - 1)2a(e, k - W]. 
In case (ii) we deduce that 

,u = 0, b(O, 0)2 = 1, and Dl = t. 

(16) 

(17) 

We determine D 2 • Note that if we have any 4-
vector A I' given by 

Ao ID k ejm) 

= a+(e, k + t)[(j - k)(j + k + 1)~ ID k + 1 ejm) 

+ a_(e, k - t)[(j + k)(j - k + 1)]t ID k - 1 ejm), 

(18) 

then from the Lorentz invariance of AI'AI' we have that 
AI'AI' ID k ejm) = (AI'AI') ID k ejm) and 

Now 
+ g(k, e)a+(e, k - Va-Ce ,k - t). 

(19) 

and we see that if r I' is given by (18), WI' will be given 
by (18) with a±(e, k ± t) -+ ::r=ea±(e. k + i). We see 
immediately therefore that 

< WI' WI') = -c2<rllI'I'). 

Hence from (2) we have 

D2 = e2(Dl + c2 - 1). (20) 

This applies for case (i) representations. 
In case (ii) we see that C2 = 0, and hence from (19) 

and (2b) we see D2 = 0. 
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5. L+ INTERLOCKING DIAGRAMS (c) IMI = I: 
We consider the irreducible representations deter­

mined by (15) and (16) for case (i), Sec. 4. Consider 
all (k, c) E D. Let I = min Ikl. Then we have the 
following possibilities. 

1. e = 0, 1=0 

Since (1,0) == (-1,0), we may take a(O, -t) = 0 
without loss of generality. Hence, we obtain 

a(O, t) = vt, 
a(O, k + t) = t, for k;;:::: 1. 

2. e = 0, 1= t 
Put a(O, 0) = M. Then we obtain 

a(O, n) = (n + M)(n - M»)t, integral n ;;:::: l. 
4(n + f)(n -- f) 

Since a(O, 1)2;;:::: 0, we must have 1 ;::: IMI. If IMI = 1, 
then a(O, I) = 0, and we only have (t, 0) E D. 

3. e = 0, I;::: 1 

Hence, a(O I - t) = 0, and we obtain 

a(O k + 1) = (k + l)(k - I + 1))! for k ;::: I. 
,~ 4k(k + 1) , 

4. e =;6 0 

From (15) and (16) we see that 

aCe, k ± t) = t-
N.B.: Throughout we have used the fact that we 

can choose the phase of the basis so that aCe, y) ;::: 0 
unless e = y = O. 

Hence, we obtain irreducible representations of 
SO(3, 2) depicted by the following interlocking 
systems. 

1. Dl = +2, D2 = 0 

[(0,0)- (1,0)- (2, O)-etc., 

a(O, t) = IJ~2, 

a(O, k + t) = t, k;::: 1. 

2. Dl = t - M2, D2 = 0, 1 ;::: M;::: -1 

(a) IMI =;6 1 and M =;6 0: 

ret, 0) -- (t, 0) -- (t, 0) --etc., 

a(O,O) = M, 

(0 ) _ (n + M)(n - M»)!- <" > 1 a , n - , lor n . 
4(n + t)(n - t) -

N.B.: [(t, 0) indicates that (t, 0) is self-interlocking. 

(b) M = 0: 

(t, 0) - (t, 0) - (t, 0) - etc., 

a(O, n) = nJ[2(n2 - !)!], n;::: 1. 

[(t, 0), 

(0 M = 1, a(O,O) = +1, 
(ii) M = -1, a(O, 0) = -1. 

3. Dl = 2 - 1(1- 1), D2 = 0, Integral or Half 
Integral I ;::: I. 

(1,0) - (l + 1,0)- (I + 2, O)-etc., 

a(O k + 1) = (k + l)(k - I + O)!- k"' I. 
,~ 4k(k + 1) , c::. 

4. Dl = 2(1 -- e2), D2 = e2(1 -- e2), e Pure 
Imaginary and e =;6 0 

(a) Integral angular momentum: 
etc. -( -2, e)-( -I, e)-(O, e)-(I, c)-(2, e)- etc. 

aCe, n) = t for all integral n. 

(b) half-integral angular momentum: 

- (-t, c) - (-t, c) - (t, c) - (t, c) -, 

aCe, n) = t for all half-integral n. 

5. Dl = 1-, D2 = 0 

(i) b(O,O) = +1, 
(ii) b(O, 0) = -1. 

(0, f), 
u 

V follows from case (ii). 
We shall refer to these as the class of "discrete 

Lorentz" VIR's of SO(3, 2). 

6. MAXIMAL COMPACT BASIS 

We now decompose these VIR's with respect to K 
and obtain a basis ID Aft jm), where ft, j(j + 1), and 
m are the eigenvalues of r 0' J2, and J3 , respectively, 
and A is any additional label necessary to specify the 
multiplicity of the reduction. 

We show below that the multiplicity of this reduc­
tion is one, i.e., that it is a singleton reduction, i.e., 
the discrete Lorentz VIR's are singleton VIR's. 

Consider the subspace R(D, j) of VIR, D, of 
SO(3, 2) with definite angular momentum j. For D, 
one of the discrete Lorentz VIR's, this subspace is 
finite dimensional, and we have a finite-dimensional 
transformation connecting the basis I D ke jm) and 
II D }. ft jm) within this subspace. For class I-IV VIR's 
we have 

liD Aftjm) = L 10 kcjm)(D kc I ).ftj), (21) 
keR(D.il 

where we write k E R(O,j) if 10 kcjm) E R(D,j). 
For class V VIR's we have 

liD}, ftjm) = 100 tjm) (DOt \A ftj). (22) 
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We write [,u,j] to indicate a VIR of K where 
j(j + 1) and ,u are the eigenvalues of J2 and r 0' 
respectively. If [,u,j] is a component in the reduction 
of a VIR D of S, we shall write [,u,j] E D. 

Note that the coefficients (D ke I A ,uj) are non­
trivial [i.e., 3 k E R(D,j) such that (D ke I A ,uj) ¥= 0)] 
iff [,u,j] E D. 

For class II(c) and V VIR's we see immediately that 
these are singleton VIR's, and we can write II D A ,u jm) 
as 

ID ,ujm) = ID t Ojm) 

for D, a class II(c) VIR, and 

ID ,ujm) = ID 0 !jm) 

for D, a class V VIR. 

(23) 

(24) 

We consider the remaining discrete Lorentz VIR's. 
From (21) and (8) we obtain, for k E R(D,j), 

,u(D ke I A ,uj) 

= a(k - t)[(j - k + I)(j + k)]!(D k - 1 e I A ,uj) 

+ a(k + t)[(j + k + I)(j - k)t(D k + 1 e I A,uj), 

(25) 

where we have put a(y) for aCe, y) as it is e inde­
pendent. Now k = j E R(D,j), and we see that 
(D je I A,u j) ¥= 0 for [,u, j] E D. Furthermore, 
(D ke I A,uj)/(D je I A,uj) is uniquely determined by 
(25) as a function of D, k, ,u, and j only. Hence, if 
II D A' ,u jm) and II D A,u jm) are two vectors in R(D,j), 
then 

(D' I A' .) 
le N liD A 'm) = liD A' ·m). 

(Dje I A,uj),ul ,ul 

It follows that each VIR of K occurs once only in the 
reduction of these UIR's of SO(3, 2). Hence, these 
are "singleton" VIR's. 

Hence, we may omit the label A and write II D A,u jm) 
as I D ,u jm). From (25) we see that the coefficients 
(D ke I A,uj) are independent of A and e and write 
these as (k l,uj), omitting the dependence on D for 
notational convenience. Hence we have 

ID,ujm)= ! IDkejm)(kl,uj) (26) 
kER(D.i) 

and, for k E R(D,j), 

,u(k l,uj) = a(k - t)[(j - k + l)(j + k)]t(k - ll,uj) 

+ a(k + t)[(j + k + I)(j - k)!(k + I l,uj). (27) 

For ID ,ujm) not a null vector, i.e., [,u,j] E D, we can 
choose 

! (k l,uj)*(k l,uj) = 1, 
kER<D.il 

and hence from (27) we can easily show that 

! (k I fl'j) (k I flj) = (}Jl'Jl' (28) 
kER(D.i) 

7. K INTERLOCKING DIAGRAMS 

From the commutation relation 

[r(q), ro] = i K(q) , 

we have that for [,u,j] E D, K~~'f = 0 unless ,u' = 
,u ± 1 (for the notation, see Appendix C). 

For class II(c) UIR's we have from (8) and (23) 
that (j half-integral) 

II(c)(i) ro ID ,ujm) = (j + t) ID ,ujm). 

Hence, only [j + t,j] E D and K ~U i;t ¥= 0 by the 
infinite dimensionality of D. 

II(c)(ii) Similarly here, only [-j - t,j] E D and 
K-:-i-t -i-t oJ. 0 

3+1 3 ".... • 

For class V VIR's we have from (9) and (24) that 
(j integral) 

V(i) only [j + t,j] E D and K;tt itt ¥= 0, 
V(ii) only [-j - t,j] E D and Kj~lt -iit ¥= O. 

We consider the remaining discrete Lorentz 
VIR's. 

From the action of K(q) we obtain the following 
recurrence relation for these UIR's, for [,u,j] ED: 

KJ'Ak, e)(k l,uj) = (k l,u - 1 j')KI';;l~(D) 

+ (k l,u + 1 j')KI'j.l ~(D). (29) 

We use (29) to show that if [,u,j] E D, then, for the 
UIR's ¥= II(c), V, 

1. K1~1 7(D) ¥= 0 for fl' = fl ± I, 
2. if D2 = 0, then K/,' 'j = 0, 
3. for class IV UIR's K'j' 7 ¥= 0 for fl' = ,u ± I 

unless (,u', fl) = ± (j + I,j), 
4. From the finite dimensionality of R(D,j) we see 

immediately, therefore, that, for class IV UIR's, 
[,u,j] E D for,u = -j, -j + I,'" ,j - I,jand that 
K'j' 7 = 0 for (,u', fl) = ±(j + I,j). 

We prove proposition I by contradiction: Suppose 
f,u,j] E D and K1:tt 7 = O. Then 

Ki+1lk, c)(k l,uj) = (k I fl- Ij + l)K~~~~. 

Now [,u,j] E D iff U l,uj) ¥= 0 [this follows from (27)] 
and hence K1.+i 7 ¥= 0 since Ki+1 i(j, e) ¥= O. Hence, 
[,u-I,j+I]ED and U+ll,u-lj+I)¥=O, 
contradicting KJ+l i(j + I, e) = O. Hence, Kj'ti 7 ¥= O. 
Similarly, K1+t'j ¥= O. 

For proposition 2 we note that if D2 = 0 for a 
discrete Lorentz VIR, then C2 = 0 and hence 

Ki i (k, e) = O. 

Assume for example that K1+1 'j ¥= O. Then 

[,u + 1 ,j] E D 
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and, from (28) and (29), we have 

Kj+1j = ~ Kilk, c)(k I ,uj)(k l,u + lj)* 
kER(D.i) 

= 0. 

Hence K'j+1 '; = 0, and similarly K'j-1 'j = 0. 
For proposition 3 assume, for example, that 

K'j+1 'i = 0. Then 

Kilk, c)(k l,uj) = (k l,u - 1 j)Kj-1 j. 

8. EXPANSION COEFFICIENTS 

For class IV UIR's, we determine the expansion 
coefficients in 

ID ,ujm) = ~ ID kcjm)(k l,uj). 

Put 
Ikl:; i 

(k I ,uj) = (j l,uj) [(2j)!]! piCk, ), 
[(j + k)! (j _ k)!]! ,u 

Ikl ::;; j. (30) 

For class IV UIR's, KiiU, c) ~ ° unless j = 0. If Then PiCk, ,u) is determined by 
j = 0, we see that ,u = ° from (27), and there is 
nothing to prove. If j > 0, then KI;-1 '; ~ 0, and 

(k I ,u - 1 j) = C k (k l,uj), 

where C ~ ° is a constant independent of k. From (25) 
we therefore have 

(j - 1 I ,uj) 2,u 2(,u - 1) j 

(j I ,uj) = (-2]-')! = (2j)! j - 1 . 

Hence,u = j. 
Similarly, K'j-1 'j ~ O,j ~ 0, unless,u = -j. 
If [,u,j] E D and K'j: 'j ~ 0, then [u',j'] ED, and 

we say [j,,u] and [j', ,u'] are interlocked, depicting 
this by 

[,u,j] - [,u' ,j']. 

Using propositions 1,2, and 3, we now deduce the 
interlocking diagrams depicting the reduction of 
the UIR's ~ II (c) , V, with respect to K, by examining 
the spectrum of the eigenvalues of r 0 in R(D, I), 
where 1 = min j. 

I: 1 = ° and, for j = 0, only [0,0] E D since (27) 
gives 

,u(0 I ,uO) = 0; 

J1(a), (b): 1 = } and, for j = t, only [M, -~] E D 
since 

,u<} I ,u~-) = M(-§-I ,ut); 

l:I: I ~ 1 and, forj = I, only [0, I] E D since 

,u(/ I ,ul> = 0; 

IV(a): for j = 0, only [0,0] E D since (27) gives 

,u(0 I ,uO) = 0; 

IV(b): for j = t, only [±t, t] E D since (27) gives 

,u(t I ,ut) = t(-t I ,ut), 

,u(-tl,ut) = t(tl,ut). 

We can now write down the interlocking diagrams 
depicting the reduction of the discrete Lorentz UIR's 
with respect to K. These are tabulated in Appendix A. 

Pi(j, ,u) = 1, 

2,upi(k,,u) = (j + k)Pi(k - 1,,u) 

+ (j - k)Pj(k + 1, ,u). 

(j I ,uj) is determined up to a phase by 

(2j)! I(j I ,uj)1 2 ~ [PiCk, ,u)]2 = 1. 
Ikl:;j [(j + k)l (j - k)l] 

(31a) 

(31 b) 

(32) 

We use the method of Laplace to solve (31) and 
obtain8 

. N 1(,u)1 ti+k 
r(k,,u) = -- . . dt, (33a) 

217i c (1 - t)1+1-)1(1 + t)HH)1 

where the contour C satisfies 

(33b) 

Substituting u = (1 - t)/(1 + t) in (33a), we obtain 

j Mj(,u) I (1 - u)Hk(l + U)'-k 
p Ck,,u) = -2-' j-I1+1 du 

171 C· U 

u=o 

(for the contour C' a circle around u = 0), nCr = 

nllr! (n - r)!. From Pi(j,,u) = 1, we finally obtain 

pi(k,,u) 

( . + )' ( . _ )' i-)1 
= ] ,u. ] ,u. 2: HkC i-lee. (-1)j-I1-". 

(2j)! 1I~O n }-I1-n 

(34) 

Substituting u = -t in (33a), we see that 

(35) 

Substituting n' = n - k + ,u in the summation (34), 
we see that 

(36) 
Put 

Li(' ) = 2: piCk, ,u')P1Ck, ,u) 
,u,,u pel'S; [(j + k)! (j - k)!] 
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From (28), 'i)(tl, ft) = 0 for tl ¢ ft. We determine. 
'f.i(ft' ft) = ~)(ft): From (36) and (31) we have 

2kpi(k, ft) = (j + ft)Pi(k, ft - 1) 

+ (j - ft)Pi(k, ft + 1). 
Hence, 

j piCk, ft)pi(k, ft - 1) 
(j + ft)"£ (ft - 1) = ~ 2k (. + k)' (. k)' 

Ikl:Si ] • ] - . 

= (j - ft + 1)~i(ft); 
~f( ) = (j + ft)! (j - ft)! ~j(.) 

ft (2j)! ] , 

~iC) = I 1 
] Ikl:Si (j + k)! (j - k)! 

2i 
= _1_ ~2iCv 

(2j)! v~o 
22i 

(2j)! 

where 1>(j, ft) is an arbitrary phase. 

(37) 

From (34), (35), (36), and (37) we obtain the 
expressions in Appendix B for (k j ftj) [substituting 
r = j - ft - n in (34)]. 

9. MATRIX ELEMENTS 

The matrix elements of the action of the generators 
on the Lorentz basis follow from the expressions for 
the reduced matrix elements aCe, y) and b(O, 0). 

For the action on the maximal compact basis we 
have to determine the K~: ~. We do this for class 
IV VIR's, using (B7) and (BS) of Appendix Band 
(29) for k = j', j' - 1. This gives two simultaneous 
equations for K/-1 ~ and KI'~l ~ and finally the result 
in Appendix C. 

10. SO(3, 1) SUBGROUPS 

S = 50(3,2) has two 50(3, 1) subgroups, L+ 
generated by J and K and M + generated by J and r. 
Under the correspondence J)1V -->- J;v defined by 

J' = J, (3Sa) 

same as in Appendix C [(C4)-(C7)] with 

ID kcjm) -->-ID kcjm)', 

J IlV ---+ J~v . 

Also, for class IV UIR's, 

ID,ujm)= I IDkcjm)'(kj,uj)', 

where 
Ikl:S i 

(39) 

(k j ,uj)' = lp(j, Il)Ci(k, ,u), (40) 

"P(j, ft) being a phase factor dependent on the choice 
for 1>(j, ,u). Putting "P(j,,u) = a*(j, ft)1>(j, ,u), we 
see that 

a(j,,u)IDftjm)= ~ IDkejm)'(kj,uj). (41) 
Ikl:S i 

Considering the action of r(q), we obtain 

a(j,,u) II D ,u' j'm') (j'm' jlq; jm)[2j + l]tprj 
)1' 

= ~ ID kej'm')'(j'm' jlq;jm)[2j + I]! 
Ikl:S j 

X Ki'ik, e)(k j ,uj) 

= Ia(j',,u')IDft'j'm')(j'm' jlq;jm)[2j + 1]~Kj:j, 
)1' 

the latter equation via (29) and (41), and hence, from 
(CIS), a(j', ft') = i(ft - ft')a(j, ,u), giving 

"P(j,,u) = (i),'1>(j, ft)· (42) 

Finally, we have that 

IDkcjm)'= ~ IDk'cjm)(k'jk)J, (43) 
WI:Sj 

and from the action of K(q) we obtain the following 
recurrence relation for (k' j k)J: 

2k'(k' j k)i = -i(k' j k + I)J[(j - k)(j + k + l)]k 

+ i(k' j k - I)J[(j + k)(j - k + 1)]k. (44) 

Hence, from (27) we have that 

(k' I k/ = (i)kCj(k', k)ji(k'). (45) 

But we also have from (43), (42), (40), (39), (26), 
(BI), and (BII) that 

(k' I k)J = ~ CJ(k', fl)i-"CJ(k,,u) (46) 
[,ll:S j 

and hence 

r~ = ro, (3Sb) 
K' = f, (38c) Using (46) with k' = k = j and (B7), we 

P = (-I)-i. 
obtain 

f' = - K, (3Sd) The results are tabulated in Appendix D. 
we see that J;v satisfies exactly the same commutation 
relations as Jilv ' Hence, S has exactly the same re­
duction with respect to M+ as it has with respect to 
L+, and we obtain in an analogous fashion an "M+­
basis" ID kcjm)' on which the action of JIlV is the 
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APPENDIX A 

DI D2 L. Reduction K Reduction 

I 2 0 
10,01 

"t{:{" )"~ 
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I 
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I 
etc. etc. 
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etc. etc· 
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etc. etc. 
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etc. etc. 

TIl ZII.h hh 
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Imaginary 
C 10 
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\,,31;, ~,72 P2 3-2.'~ (b) I· 1Z' cl (f2 , cI 

J\.',H\\ " \,,,I,;,,~\,\ - I I 
1.5/2 , c I (5/Z ' c) 

I I 
etc etc. etc· 

Sl 54 ° (0, YZ) ~2'0\(il (iii 1~,oJ 
LJ 

3/2,1) 
1'1 

5/2'Z~ J'i-2'Z ',. 

etc. etc. 

APPENDIX B 

ID,ujm) = 2 IDkcjm)(kl,uj), DclassIVUIR, 
IleIS, 

with 

where cpU, ,u) is an arbitrary phase. 

C\k, ,u) 

= (2
j!' [(j + ,u)! (j - ,u)! (j + k)! (j - k)W1pi(k,,u), 
2 

(B2) 

= i (-It(j + ,u)! (j - ,u)! (j + k); (j - k)! , 

r=m r! (r + k + ,u)! (j - r - k)! (j - r - ,u)! 

where 
n = min {j - k, j - fl}, 

m = max {O, - (k + fl)}. 

(B3) 

C' (k, fl) has the following symmetries: 

C'(k, fl) = Ci(fl, k), (B4) 

Ci(k, fl) = (-l)HCi(k, -fl), (B5) 

Ci(k,,u) = (_l)k+PCi( -k, -,u). (B6) 

We tabulate the results for some simple cases: 

Ci[±j, t] = Ci[t, ±j] 

. (l)i( (2j)! )* (B7) 
= (±1y-t 2 (j + t)! (j _ t)! ' 

Ci[±(j - 1), t] = C(t, ±(j - 1)] 

= 2t(±1)'-t(~)i( (2j - I)! )*, 
2 (j + t)! (j - t)* 

Ci[±(j _ 2), t] (B8) 

= C[t, ±(j - 2)] 

= [2l _ j](±I)i-t(~)i( 2(2j - 2)! )*. (B9) 
2 (j + t)! (j - t)* 

The orthonormality condition is 

2 Ci(k, fl')Ci(k, fl) = 0P'P' (BIO) 
l"ISi 
L Ci(k', fl)Ci(k, fl) = ()k",· (Bl1) 

IplSi 

The recurrence relations for piCk, fl) are, Ikl ~ j, 

Ifll ~j, 
2flPi(k, fl) = U + k)Pi(k - 1, fl) 

+ U - k)Pi(k + 1, ,u), (BI2) 

2kpi(k,,u) = U + fl)Pi(k,,u - 1) 
+ U - fl)Pi(k, fl + 1), (BI3) 

PiU,,u) = pi(k,j) = 1. (BI4) 

From (29) we also obtain 

2[(j + 1)2 - k2]pi(k,,u) 
= (j + 1)(2j + 1)[pi+l(k,,u + 1) - Pi+l(k,,u - 1)], 

(BI5) 

2(j + 1)(2j + I)Pi+1(k,,u) 

= (j + ,u + 1)(j + ,u)pi(k,,u - 1) 
- (j - ,u + 1)(j - ,u)Pi(k,,u + 1). (BI6) 
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APPENDIX C 

We explicitly determine the action of. the generators 
on the Lorentz basis and on the maximal compact 
basis. 

We use the Wigner-Eckart theorem and define 

J(O) = JIZ ' 

J(±l) = =f2-!(Jza ± iJa1), 

K(O) = J oa , 

K(±l) = =f2-!(J01 ± iJ02) , 

reO) = ra , 

r(±1) = =fTt(f1 ± if2)· 

Then on the Lorentz basis ID T jm) we have 

(Cta) 

(Clb) 

(C2a) 

(C2b) 

(C3a) 

(C3b) 

J(q) ID T jm) = Z ID T jm') (jm' Ilq;jm)J" (C4) 
m' 

K(q) IDT jm) = Z IDT j'm'> (j'm' Ilq;jm) 
:i'm' 

X [2j + l]iKrlT), (C5) 

ro ID T jm) = Z ID T jm) rj'T(D), (C6) 
T' 

r(q) / D T jm) = Z I D T' j'm') (j'm' Ilq; jm) 
r'i'm# 

X [2j + l]!r~:~(D). (C7) 

On the maximal compact basis ID ",jm) we have 

J(q) ID ",jm) = 21D ",jm')(jm' Ilq;jm)J j , (C8) 
m' 

ro I D ",jm) = '" ID ",jm), (C9) 

K(q)ID",jm) = Z ID",'j'm')(j'm'llq;jm) 
Jl'j~m' 

X [2j + 1]! K~:j(D), (CtO) 

r(q)ID",jm)= z ID",'j'm')(j'm'/lq;jm) 
p'j'm' 

X [2j + l]!r~:j(D). (CII) 

(j'm' Ilq;jm) is the Clebsch-Gordan coefficient, with 
the phase convention as in Rose,9 ((jm/jlml;jzmZ) = 
C(hj2j; mlm2m)]: 

J, = - [j(j + I)]!. (CI2) 

From the commutation relation 

r i = i[JOi ' ro], 
we have 

Hence it suffices to determine r? and Kj:j. 

(CI3) 

(C14) 

(CI5) 

For the Lorentz basis: 
In general 

. [(F - k2)(F - c2)]t 
K·_1ik,c) = -I l' 

3 , [j(2j _ l)(2j + l)]~ 
for j > Ikl, (C16a) 

= 0, for j = Ikl, (CI6b) 

Ki.j(k, c) = i kc !' for 
[(2j + l)j(j + 1)] 

j > 0. 

(C16c) 

N.B.: Ko.o(O, c) is superfluous as (00 Ilq; 00) = 0 
in any event: 

KHl.j(k, c) = Kj.H1(k, c). (C16d) 
For class IV UIR's: 

nk±l,cHk,C) = HU =f k)U ± k + 1)]i, (CI7) 

-1.(' ) '['2 2]! K~±:/l=± 'f},'" l} -c 
3- J c/>U _ 1, '" ± 1) 2[j(2j - 1)(2j + I)]! 

X [(j =f ",)(j =f '" - 1))t, for j > 0, 

= 0, for j = 0, 

#1/l C/>U, ",) ic 

K i i = C/>(j, p ± 1) 2[(2j + l)j(j + I)]! 

(CI8a) 

(C18b) 

X [(j =f ",)(j ± '" + I)]!, for j > 0, 
(CI8c) 

K/l±1/l _ =f c/>(j, ",) 
1+1 j - c/>U + 1, '" ± 1) 

i[(j + II - c2]! 
X--~---'---"---:' 

2[(j + 1)(2j + 1)(2j + 3)]! 

X [(j ± '" + J)(j ±!1 + 2)]t, (C18d) 

APPENDIX D 

ID ",jm) = Z ID kcjm)'(k I ",j)', 
1"1:"= j 

(DI) 

where 

(k I pj)' = (i)"C/>(j, ",)Ci(k, ",), (D2) 

/D k'cjm)' = Z ID kcjm)O)k+k'-2iCJ(k', k). (D3) 
Ikl :"=i 
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Physical, analytical, and numerical properties of the lattice Green's functions for the various lattices 
are described. Various methods of evaluating the Green's functions, which will be developed in the 
subsequent papers, are mentioned. 

This paper is intended to be a general introduction 
to a series of papersI - 4 which are presented by a 
group of authors to investigate the lattice Green's 
functions in several new methods. 

The Helmholtz equation in the continuous space 
is given by 

(1) 

for the wavefunction !per). The Green's function 
gee, r) is defined to be a solution of 

tLlg + Eg = oCr). (2) 

into Eq. (4) and taking Eqs. (6) into consideration, 
we have the eigenvalue of Eq. (4), 

Ek = 3 - cos kx - cos ky - cos kz, for sc, 

Ek = 4(1 - cos kx cos ky cos k.), for bcc, 

Ek = 2(3 - cos kx cos ky - cos ky cos k z 
(8) 

- cos k z cos k x), for fcc. 

The periodic boundary condition rp(r + Lfl.) == rp(r) 
gives the quantum number 

k = 27TAIL, }'x, Ay , Az = 0, 1,2,'" ,L. 
The quantity corresponding to d2fjdx2 in the 

discrete lattice space is Putting 

:x(:xi) =in+1 - 2in + in-I, (3) 

where Llx, the lattice spacing, is taken as a unit of the 
length. Generalizing Eq. (3) to a lattice of specified 
type, we have 

z 
t L rp(r + fl.) + (E - tz)rp(r) = 0, (4) 

LI. 

for the wavefunction rp(r), and 

z 

t L G(E, r + .d) + (E - tz)G(E, r) = or.o, (5) 
LI. 

for the Green's function G(E, r) as the Helmholtz 
equations in lattice spaces. Here r = (I, m, n) and .d 
is the nearest neighbor vector, i.e., 

Ll.sc = (± 1,0,0), (0, ± 1,0), (0,0, ± 1), 

fl.bec = (±1, ±1, ±1), (6) 

fl.fcc = (0, ±1, ±1), (±1, 0, ±1), (±1, ±1, 0), 

where sc stands for the simple cubic lattice, bcc for the 
body-centered cubic lattice, and fcc for the face­
centered cubic lattice, respectively. 

Substituting 
(7) 

G(E r) = 1- '" A eik.r N = I! , Nt k , - , (9) 

into Eq. (5) and equating the coefficients ofexp (ik· r) 
on both sides, we obtain Ak = 1/(E - Ek)' Hence 

G(E, r) = 1- L _1_ eik.r 
N k E - Ek 

1 

E - Ho 
(10) 

The lattice Green's functions G(E ± i€, 0), € ----+ 0, 
are real for E > Ek max and E < Ek min (outside the 
energy band). They are complex for Ek min < E < 
Ek max' They have singularities at E = Ekmin , 
E = Ek max and may have them at some value of E 
within the band. Equation (10) gives the lattice 
Green's function in a general form. 

By the formula l/(x - i€) = P(l/x) + i7TO(X), we 
have 

1m G(E - i€,O) = 7T 1- L b(E - Ek ). (11) 
N k 

On integrating both sides from - 00 to E, the right­
hand side gives the number of states whose energy 
is less than E. Hence (1/7T) 1m G(E - if"O) 
represents the density of states. 

892 
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From Eqs. (6) and (10) we encounter the following 
nontrivial integrals: 

IBc(a; I, m, n) = Iortho(a; I, m, n; 1, 1, 1) 

= Itctra(a; I, m, n; 1), 

ftetra(a; I, m, n; Y) = Iortho(a; I, m, n; Y, 1,1), 

11 

1 Iff cos Ix cos my cos nz d d d -- x y z 
- 7T

a a - Yl cos X - Y2 cos Y - Ya cos z ' 
o 

(12) 
11 

= ~ Iff cos Ix cos my cos nz dx dy dz, 
7T

a a - cos x cos y cos z 
o 

Ircc(a; 1, m, n) 
11 

1 Iff cos Ix cos my cos nz 
= 7T

a a - cos x cos y - cos y cos z - cos z cos x 
o 

x dx dy dz, 

where 

Isc(a; I, m, n) = -G(E, r), a - 3 = -E + iE, 

Ibcc(a; I, m, n) = -4G(E, r), a-I = t(-E + iE), 

Ircc(a; I, m, n) = -2G(E, r), a - 3 = H-E + iE), 

r = (I, m, n), (13) 

for the sc, bcc, and fcc lattices. The integrals 

Itetra(a; I, m, n; y) and Iortho(a; I, m, n; Yl' Y2' Ya) 
for the tetragonal and orthorhombic lattices, respec­
tively, are introduced for the convenience of the 
following discussions. It is to be noted· that 
Re Ibcc(a; I, m, n) is aIle odd function of a and 
1m Ibcc(a; I, m, n) is an even function of a, and also 
that RelorthO(a;l,m,n;Yl,Y2,Y3), Reltetra(a;l,m, 
n; y) and Re Isc(a; I, m, n) are odd or even functions 
of a and ImIortho(a;l,m,n;Yl'Y2,Ya), 1m Itetra(a; 
I, m, n; Y), and 1m Isc(a; I, m, n) are even or odd 
functions of a, according as the sum of I, m, and n is 
even or odd. 

The lattice Green's functions (12) appear in the 
problems of lattice vibrations, of spin wave theory of 
Heisenberg model of magnetism, of localized modes 
of oscillation at the lattice defect, and of others. They 
are integrals which have many applications in solid 
state physics.5.6 The one-body Green's function of the 
orthorhombic lattice IorthoCa; I, m, n; Yl' Y2' Y3) has 
appeared as the two-body Green's function of the 
simple cubic i<ittice.7 In that case Yl = cos tK"" Y2 = 
cos tKy , and Y3 = cos tKz , where K"" Ky , and K z 

are the x, y, and z components of the total momentum 
of the two-body system. 

The integrals Isc(J; 0, 0, 0), Ibcc(l; 0, 0, 0), and 
I{ccC3; 0, 0, 0) (at the bottom of the band) were 
evaluated by Watson8 in a closed form in terms of 
products of elliptic integrals. 

The imaginary part of Isc in Eqs. (12) for 1 = m = 
n = 0, the negative of the density of states in the 
ideal spin waves, was calculated by Bowers and 
Rosenstock,9 by Montroll,lO and by others.u The 
nature of the singularity was discussed by Van Hove,12 
in general, and by MontrolJ.1° 

The integral Isc(a; 0, 0, 0) is real for a ~ 3, complex 
for ° S a < 3, and it has singularities at a = 1 and 
a = 3. The expansion coefficients of Isc (a ~ 3; 
0,0,0) in powers of 1/a2 and a short table of it were 
given by Tickson.13 Maradudin et 01.5 obtained the 
first few coefficients of the expansion in terms of 
a - 3, and showed that the leading term at a = 3 is 
Ise(3) + O«a - 3)i). They also gave a table of 
!tetra (a ~ 2 + Y; t, m, n; y) for 12 + m2 + n2 SIS, 
Y = 1,2,4,8, 16. Mannari and Kawabata6 expressed 
Isc (a ~ 3; 0, 0, 0), Ibee (a ~ 1; 0, 0, 0), and I{ee (a ~ 
3; 0, 0, 0) in terms of the definite single integral of 
the elliptic functions and gave extensive tables by 
carrying out the numerical calculations of these 
integrals. 

Short tables of the real and the imaginary parts of 
1.,c(a; t, m, n) were given by Koster and Slater14 

(0 S a S 3,000; 3 sa S 5,000, 100,200,300,400; 
a = 3.5, up to 333), by Wolfram and Callaway15 
(0 S a S 6, 000, 100, 011, 200), and by Hone, 
Callen, and Walker16 (0 S as 9,000, 011,200,022) 
by numerical integration of 

Ise (a ~ 3; I, m, n) = fOdte-atI/(t)Im(t)In(t), 

Isc(a < 3; I, m, n) = i/+m+n+1i'X)dte-iatJ/(t)Jm(t)Jn(t). 

(14) 

Yussouff and Mahanty17 also gave tables of 
IBc(a; t, m, n) (0 S a S 7, up to 200). Vashishta and 
YUSSOUff18 gave rough tables of Isc(a; I, m, n) 

(0 S a S 9, up to 200), Ibcc(a; t, m, n) (0 S a S 3, 
up to 220), and Ircc(a; t. m. n) (-5 S a S 7, up to 
220) by the Fourier expansion method. Values of 
Ibec(a; l. m, n) were also given by Yussouff and 
Mahanty19 (0 S a S 3, up to 222), by Walker, 
Celtin, and Hone20 (0 S a S 2, up to 444). 

Other available sources of the lattice Green's 
functions for other crystal structures are the following: 
The lattice Green's functions for the square and 
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rectangular lattices are defined by 

18q(a; 1, m) = Ireet(a; 1, m; 1, 1), 

I rect( a; 1, m; YI, Y2) 

1 If cos Ix cos my d d =- xy 
7T

2 a - YI cos X - Y2 cos Y . 
o 

(15) 

(15') 

The real parts of these functions are odd or even 
functions of a and the imaginary parts are even or odd 
functions of a, according as the sum of I and m is 
even or odd. In a similar way, Irect(a; I, m; YI' Y2) 
can be regarded as the two-body Green's function of 
the square lattice. 

For the square lattice, the density of states 
1m 18q (0:::;; a :::;; 2; 0, 0) was given by Bowers and 
Rosenstock9 and by Montroll,IO.21 the real part of 
Isq (a ~ 2; 0, 0) outside the band by Mannari and 
Kageyama.22 The density of states of the orthorhombic 
lattice at the band edge was given by MontrolJ.1° In 
Ref. 10, the imaginary part for the rectangular lattice 
1m Irect(a; 0, 0; YI' Y2) was also expressed in terms 
of the complete elliptic integral of the first kind. 

The function Ibcc (a ~ 1; 0, 0, 0) was expressed as 
a square of the complete elliptic integral of the first 
kind by Maradudin.23 The functions Itce (a ~ 3; 
0, 0, 0) and I tee (a :::;; -1; 0, 0, 0) were expressed as 
products of the complete elliptic integrals (with 
different moduli) by Iwata. 24 

In spite of great interest in the physical applications, 
little is known about the analytical nature and the 
accurate numerical values. For example, the exact 
value of Ise(1 ; 0, 0, 0) is not yet known. The authors 
are presenting several new methods of calculating 
the lattice Green's functions in a series of papers. 
In the second paper of this series,1 Ise (a ~ 3; 0, 0,0) 
is transformed into a Mellin-Barnes type integral, 
and it is shown that its analytic continuation gives the 
real and the imaginary parts of 18e (0 :::;; a :::;; 1; 
0,0,0) and Ise (l :::;; a:::;; 3; 0, 0, 0) in the form of a 
double series, which gives simple and rapid subrou­
tines for numerical calculations. The exact values of 
Re 18c(1; 0, 0, 0), 1m 18c (l; 0, 0, 0), 1m 18c(0; 0, 0, 0), 
Re 18c(.J5; 0, 0, 0), and 1m 18c(.J5; 0, 0, 0) are also 
obtained. This method has the advantages that the 
analytic properties of the function are easily discussed 
and that the generalization to cases 18c(a; I, m, n) is 
straightforward. 

In the third paper,2 the expressions of Itetra (a ~ 
2 + Y; 0, 0, 0; Y), Ibee (a ~ 1; 0, 0, 0), and Itce (a ~ 
3; 0, 0, 0) given in the form of the definite integral 
of the complete elliptic integral of the first kind are 
analytically continued to the whole range of - 00 < 

a < 00. The results are expressed as a sum of definite 
integrals of the complete elliptic integrals and have 
been used for the numerical calculation of Isc (0 :::;; 
a < 00; 0, 0, 0), Ibcc (0:::;; a < 00; 0, 0, 0), and Itec 
(-00 < a < 00; 0, 0, 0). 

A divergence of the Green's function3.4 •25 is found 
for the bcc and fcc lattices. It has been discussed in 
connection with Van Hove's discussion of the lattice 
spectrum.25.4 

The analytic continuations of the closed expressions 
of Ibce (a > 1; 0, 0, 0) due to Maradudin5 and 
I tcc (a ~ 3; 0, 0, 0) and Itcc (a:::;; -1; 0, 0, 0) due to 
Iwata24 are discussed in two different standpoints. 
In one paper,3 Re Ibcc (0 :::;; a :::;; 1; 0, 0, 0) and 
1m Ibce (0 :::;; a :::;; 1; 0, 0, 0) are expressed in terms 
of the hypergeometric function of real variables. The 
asymptotic behaviors at a ~ 0, a ~ 1, and a ~ 1 
and the nature of the divergence at a = ° are easily 
derived. These expressions provide a simple and rapid 
subroutine for numerical calculations. 

In another paper,26 it is pointed out that the 
arithmetic-geometric means method is powerful in 
calculating the elliptic integrals (and the Jacobian 
elliptic functions) also when the modulus is complex. 
The method is quite convenient in evaluating the 
analytic continuations for the Green's function 
which are expressed in terms of the complete elliptic 
integral with complex modulus.4 Such an expression 
is provided for Isq(a; 0, 0), Irect(a; 0, 0; YI, Y2), 
Ibcc(a; 0, 0, 0), and Itcc(a; 0, 0, 0).4 The numerical 
calculations of these quantities for an arbitrary 
complex variable a can be performed as easily as for 
the real variable a, - 00 < a < + 00. These expres­
sions are also used in discussing the analytic behaviors. 
These methods3.4 are more convenient in evaluating 
Ibcc (- 00 < a < 00; 0,0,0) and Itec (- <X) < a < 00; 

0,0,0) than the one given in the third paper2 of this 
series. 

We notice here that the expressions derived in the 
third paper2 involves one of the coordinates x as an 
integration variable over which the tina I integration 
is still to be performed. Hence, when one has an 
additional function of x in the integrand of sc in 
Eqs. (12), the integrals in the final expressions involve 
the same factor. For instance, ifthe function is cos lx, 
one obtains an expression useful for the calculation of 
ltetra(a; I, 0, 0; y). This result is known to give the 
values of Itetra(a; I, m, n; y) for some sets of I, m, 
and n.5 The method of the third paper is expected to 
be generalized to lortho(a; 1, m, n; Yl, Y2' Ya). 

The calculations of 18c(a; I, m, n) by the methods 
mentioned in this paper are now in progress and will 
be reported as parts of this series. 
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In this paper, lea) for a> 3 is expressed as a 
Mellin-Barnes type integral giving series representa­
tions for a > 3. The analytic continuation of the 
integral gives series representations of the real parts 
and the imaginary parts for ° < a < 1 and 1 < a < 3. 
These expressions provide simpl\! and rapid subrou­
tines for the numerical calculations. The values at 
a = 0, a = 1, and a = .)5 are obtained exactly. 

2. a > 3 

Equation (1) can be written 

i 100 1" 1" 1" lea) = - - dt dx dy dz 
7T3 

0 0 0 0 

X exp {i[(a + if) - cos x - cos y - cos z]t}. 

When we carry out the integration dx dy dz, th'en 

lea) = -iiooei(awlt[Jo(tW dt. (3) 

Transforming the series representation of [JO(t)]2 
into the Mellin-Barnes type integral representation, 
we have 

[J
O
(t)]2 = i (- )mctt)2m(m + 1)m 

m=O m! [rem + 1)]2 

= _1 __ 1_ r ds r( -s)r(s + t)t
2S

, (4) 
.)7T 27TiJC [res + 1)]2 

where C is a straight line parallel to the imaginary 
axis crossing at the point s = -~(~ ---+ +0). Sub­
stituting Eq. (4) into Eq. (3) and changing the order 
of the integrations ds and dt, we obtain 

lea) = -i _1_ r ds r( -s)r(s + i) 
./7T 27Ti Jc [res + 1)]2 

X 100 

dt ei(a+idtJo(t)t2S. 

For f > ° and 2s + 1 > 0, the integral SO" dt con­
verges: 

1
00 r(2s + 1) 1 -2 

dt· .. = 2 2Fl(S + 2, s + 1; 1; a ). 
o (-ia) 8+1 

Hence 

lea) = _1 _1_ fdS r( -s)[r(s + t)]2(_ ±)S 
7Ta 27Ti res + 1) a2 

X 2Fl(S + t, s + 1; 1; a-2
). (5) 

For lal > 1, expanding 2Fl and changing the 
order of the integration and the summation, we 
obtain 

1 00 1 (1)n 1 f ( 4)S lea) = - L - - ds --
7Ta n=O n! r(1 + n) a2 27Ti a2 

r( -S)r(S + t)r(S + t + n)r(s + 1 + n) 
X . 

[r(S + 1)]2 
(6) 

For lal > 2, the path of the integration is closed with 
a semicircle in the right half-plane. The pole of the 
integrand in this region is s = 0, 1,2; . ·,m,. ... By 
calculating the residues we have 

1 00 00 

lea) = - 2 L 
7Ta n=O m=O 

x r(m+t)r(m+n+t)r(m+n+1)4m(1.-)m+n. 
n!r(1+n)m![r(1+m)]2 a2 

(7) 

We investigate the region of the convergence of the 
double series3 

1 00 00 

lex, y) = - L L 
7Ta ,,=0 m=O 

r(m+t)r(m+n+t)r(m+n+1) m m n 
X 4 x y 

n! r(n+1)m! [r(1 +m)]2 

(8) 

which is generalized from Eq. (7). Put m = tft and 
n = tv; then, from 

~ == lim Am+1.n = 4(ft + V)2 

r t .... oo Am.n ft2 

! = lim A m •n+1 = (ft + V)2 
- 2 ' 

S t .... oo Am.n v 

we have 

4r + s + (16rsi = 1. (9) 

For r = s, we have r = t. That is, Eq. (7) converges 
for lal > 3. 

Putting m + n = p, we transform Eq. (7) into 

1 00 (I)P lea) = - 2r(p + i)r(p + 1) 2 
7Td p=o a 

Equation (10) is a power series of 1/a2 , when the 
coefficients are calculated by a finite series. Equation 
(10) is convenient for the numerical calculation. The 
imaginary part of lea) vanishes for lal > 3. 

3.0<a<1 

The expansion of lea) for small a can be obtained 
by the analytic continuation of the integral repre­
sentation (5). Transforming 2Fl( ; ; 1/a2) into 
2Fl( ; ; a2) with use of the Kummer's relation, 
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we obtain 

I(a) = 1- _1 IdS r( -s)[r(s + t)]2(_ i)S 
71"a271"i r(s+1) a2 

[ 
ret) (1 )-S-! 

x res + t)r(-s + t) - a2 

X 2F1(S + t, S + t; t; a2
) 

1'( -t) ( 1 )-S-l + ---
r(s + t)r( -s) a2 

X 2Fis + 1, s + 1; t; a2)]. (11) 

The first and the second terms in the square brackets 
give the imaginary and the real parts, respectively. 
We denote I(a) = IR(a) + II (a). 

Real part: Expanding 2Fl in the second term and 
changing the order of the summation and the inte­
gration, we have 

00 a2n 
IR(a) = a L ---­

n~O n! r(n + t) 
1 Jd r(s + t)[r(s + 1 + n )]248 

X - S -'---=-.::........;'-------'-'~ 

271"i [res + 1)]3 
(12) 

The path of the integration is closed with a semi­
circle in the left half-plane. The pole of the integrand 
is given by s + t = 0, -1, -2,' ... By calculating 
the residue, we have 

a 00 00 [1'(.1 + m)]3(.l)m a2n 
IR(a) = - L L 2 4 

271" n m n! m! ret + n)[ret - n + m)]2 

(13) 

The region of the convergence of the double series 
L Amnxmyn generalized from Eq. (13) is given by 

r-1 = p,2/(p, - V)2, S-l = (p, _ V)2/ V2. 

Hence 
r-! - st = 1. (14) 

For x = t, we have y = 1. Hence Eq. (13) converges 
for lal < 1. 

Imaginary part: The contribution of the first term 
in the bracket in Eq. (11) gives 

h(a) = -i _1_ Jds4s 1'( -s)[r(s + t)]2 
.J 71" 271"i [res + 1)]21'( -s + t) 

x 2F1(s + i, s + i; i; a2
). (15) 

Expanding 2Fl in powers of a2 , we obtain 

00 a2n 
Il(a) = -i"2, ---'--­

n~on!r(t + n) 

X _1_ JdS r(-s)[r(s + n + tw 4 8• (16) 
271"i [res + 1)]21'( -s + t) 

The path of the integration is closed with a semi­
circle in the left-hand plane, in which double poles 
s = -t - n - m, m = 0, 1,2, ... , are found. By 
calculating the residues of the double poles, we have 

_1_ JdS4S r(-s)[r(s + n + tW 
271"i [res + 1)]21'( -s + t) 

="2, -- (s + t + n + m)2 00 [d 
m~O ds 

1'( -s)48 
) 

x [r(l-s-n-t)]2[r(S+ 1)]21'( -S+t) s~-!-n-m 
= j: ret + m + n)4-l- n

-
m 

. 

m~O [1'(1 + m)]2[ret - m - n)]2r(1 + n + m) 

x [-V!(t + m + n) + 2V!(1 + m) 

- 2V!(t - m - n) + V!(1 + n + m) + log 4]. 
(17) 

Hence 

i 00 00 

Il(a) = - -2 L L 
271" n~O m~O 

(a 2/22Ymm[I'(t + m + n)]3 
X -~~~~~-=---~---

n! ret + n)[r(l + m)fr(l + m + n) 

X [-3V!(t + m + n) + 2V!(1 + m) 

+ V!(1 + n + m) + log 4]. (18) 

The radius of the convergence of Eq. (18) is also 
a = 1. 

4. 1 < a < 3 

The expansion of I(a) at a2 = 5, which is convergent 
for la2 - 51 < 4, i.e., 1 < a < 3, is derived by the 
analytic continuation from the expansion (7). 

For large value of a2 , Eq. (7) is convergent and is 
equal to 

1 00 [r(t + m)]2( 4)m 
lea) = - "2, -

71"a m=O (m !)2 a2 

x 2Fl(m + 1, m + 1, -1; a-2). (19) 

Transforming 2Fl( ; ; l/a2) into 2Fl( ; ; 1/(1 - a2» 
with use of Kummer's relation 

2Fl(a, b, c; z) 

= (1 - z)-a 2Fl(a, c - b, c; z/(z - 1», (20) 
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we have 

lea) = 1.(-2 1_)! f (ra + m»)2(_4_)m 
17 a - 1 m=O m! a2 

- 1 

x 2Fl(m + t, -m, 1; _1_), 
1 - a2 

which is valid for large a2• 

(21) 

. Expanding the hypergeometric function and chang-
109 the order of the summation, we have 

where 

= _1 i( _1)n(a
2 

- 5)n 
417i n=O n! 4 

X i (-1)mr(l+m)r(t+n+m)r(t+n+2m)(!)m 
m=O (m!)2(n+2m)! 4 

X [-1p( t + m) - 1p( t + n + m) 

- 21p(t + n + 2m) + 21p(1 + m) 

+ 21p(1 + n + 2m) + log 4] (26) I(a) = ! (-2-1_)! i ret + n)r(t + 2n) (_2 _)2n 
17 a-I n=O (n !)3 a2 

- 1 
and 

X 2Fl(t + n, i + 2n; 1 + n; _4_). (22) a2 _ 1 Il(a) 

Again applying the relation (20), we transform 
2Fl( ; ; 4/(a2 

- 1» into F( ; ; 4/(5 - a2» and 
we have 

[(a) = 1. ir(t + n)rO + 2n) 4n(_1_)2n+! 
17 n=O (n!)3 a2 - 5 

X 2Fl(i' t + 2n; 1 + n; _4_) 
5 - a2 

= 1.(_1 )!_1 r (dt [_4(_1 )2Jt 
17 a2 - 5 217i JRet=-4 a2 - 5 

X r(-t)r(t + t)r(t + 2t)} 
[r(1 + t)]2 

X F(t, l + 2t; 1 + t; _4_). (23) 
5 - a2 

Transformation of F( ; ; 4/(5 - a2» into F( , , 
(5 - a2)/4) and the expansion of the hypergeometric 
function leads to 

1 ( 1 )~ 1 f {[ ( 1 )2Jt lea) = - -- - dt -4--
17 a2 - 5 217i Rct=-4 a2 - 5 

X r(-t)rct + t)rCt + 2t)} 
[1'(1 + t)]2 

X [i (-ltra + n)r(2t - n) (a 2 
- 5)n+! 

n=O n!r(t-n+t) 4 

+ i(-l)nr(! + 2t + n)r(-n - 2t) 

n=O n! ret - n - t) 

X (a 2 ~ 5f+2t+!]. (24) 

Changing the order of the integration and summa­
tion and closing the path of integration with a semi­
circle in the left half-plane, we finally obtain 

(25) 

= -i i i ra + m)[r(t + n)]2(m + n)! 
4172 m=O n=O m! n! r(n + tm + 1)r(n + tm + t) 

1 (5 _ a2)m+2n+l x---
2m 4 

__ ,_' i ir(t+m)f(t + n + m)r(l + n + 2m) 
417i m=O n=O. (m !)2n! (n + 2m)! 

X (~lre ~ a2r (27) 

The first term in Eq. (27) can also be written as 

i 00 1 (5 _ a2)p+l 
- 217i p~o (p + 1)! -4-

X :SI2 4n[ra + n)]2r(p - 2n + t)r(p - n + 1) 

n=O n! rep - 2n + 1) 
(27') 

Equations (26) and (27) are power series of 
(a2 - 5)/4, which is convergent for /a2 - 5/ < 4, 
i.e., 1 < a < 3. 

5. In(1), 11(1), 11(0), IR ( y'5), AND I l ( y'5) 

The value of IR(l) can be obtained exactly. Carrying 
out Ln in Eq. (13), we obtain 

fR(a) = ~ i rem + t)(!)m 
21T m=O m! 4 

X 2FtCt - m, t - m; t; a2
). (28) 

Putting a = 1, and using the formula of 2Fl( ; ; 1), 

f
R

(1) = -.l i (t)mr(t + m)I'(t + 2m). (29) 
217 m=O m! [1'(1 + m»)2 

The summation Lm can be expressed in terms of 
3F2' By using the formula for 3F2( ; ; 1), IR(l) is 
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given by 

I (1) - r(!)r(l)r(t) F (1 1 3. 1 l' 1) 
R - !! 3 24,2,4, , , 

2 71' 

= (1 - 2-t)(-;r[K«2~2 - 2)t)]2 

= t71'[r(m-2[r(-m-2 

= 0.642882248294458 .... 

(30) 

(30') 

(30") 

The value of Ir(O) can also be obtained exactly. 
From Eq. (18) we have 

/reO) = ~ I ( rem + t) )3(!)2m 
-i 271'm=O 71'tr(m + 1) 2 

x [31p(1 + m) - 31p(m + t) + 2 log 2]. 

(31) 

The right-hand side is expressed in terms of product 
of elliptic integrals2 (2/71'2)K(k)K(k') , where kk' = t. 
Hence 

= 0.896440788776763 .. '. (32") 

Transformation of 2Fl( ; ; a2) in Eq. (11) into 
2Fl( ; ; 1 - a2) or zF1( ; ; 1 - l/a2) gives the 
values of the real and the imaginary parts at a = 1: 

respectively. 

The values of I R ("j5) and Ir("j5) can be obtained 
in a similar way. The results are 

IR ("j5) = !("j5 - 2)t(2/71')2K(k)K(k') 

= 0.547093244340170 

= "j5 Ir("j5)/( -i), (34) 

Ir("j5)/( -i) = !("j5 - 2)t(2/71')2[K(k)]2 

= 0.244667536875105 .. " (35) 
where 

k2 = t - ("j5 - 2)t. (36) 

6. CONCLUSION 

Equations (10), (13), (18), (26), and (27) are the 
desired series representations of IR(a > 3; 0, 0, 0), 
IR(O < a < 1; 0, 0, 0), 11(0 < a < 1; 0, 0, 0), 
I R(1 < a < 3; 0, 0, 0), and Ir(1 < a < 3; 0, 0, 0), 
respectively. They are useful for analyzing the nature 
of analytical properties and supply simple and rapid 
subroutines for carrying out numerical calculations. 
Though these expressions seem to be double series, 
they become single series of independent variables 
after the coefficients have once been calculated. 

The numerical values obtained from Eq. (10) 
reproduces Mannari and Kawabata's table.4 Those 
from Eqs. (13), (18), (26), and (27) agree with values 
obtained by the method presented in the next paper 
by Morita and Horiguchi. 5 The exact values of I R (I), 
[r(1), [r(O) , I R ("j5), and I r("j5) are given in Eqs. (30), 
(32), (33), (34), and (35). It is to be noted that all these 
values and IR(3) are expressed in the product of the 
complete elliptic integrals of the first kind. The general 
expression for arbitrary a may perhaps exist in a 
generalized form. 
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