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The recently developed asymptotic theory of wave propagation is extended to slightly inhomogeneous
and slowly varying anisotropic media which exhibit both spatial and temporal dispersion. A particular
form of the constitutive relation is first introduced. Asymptotic solutions are then obtained by assuming
a series solution “ansatz” into Maxwell’s equations and the constitutive relation. The eikonal equation
and the transport equation are obtained, by a procedure similar to that of Lewis, for lossless media, in
which a Hermitian operator is involved. The modified transport equations obtained from other forms of
the constitutive relation are given. They are interpreted as generalized Poynting theorems for appropriate
physical situations. Finally, as a by-product of this work the space-time conductivity tensor of aniso-
tropic plasmas ©(r, 1), which is the 4-dimensional Fourier-Laplace transform of O(k, w), is found to be

very simple.

1. INTRODUCTION

Recently the asymptotic method has been developed
for a large class of problems of wave propagation.!
In particular, Lewis applied the method to obtain the
time-dependent solutions of dispersive hyperbolic
partial differential equations® and an integro-differ-
ential equation describing electromagnetic wave
propagation in temporal-dispersive media.® He intro-
duced formally a large parameter into the asymptotic
solution, and expanded the asymptotic solution in
terms of inverse power of this large parameter. He and
his co-workers then applied this method to various
problems of wave propagation involving time-depend-
ent solutions.*~7

In this paper, the recently developed asymptotic
theory is extended to the problem of wave propagation
in spatial- and temporal-dispersive slightly inhomo-
geneous and slowly varying media. Temporal dis-
persion occurs when the characteristic frequencies
of the medium, e.g., the resonance absorption fre-
quency of molecules, the plasma frequency and the
cyclotron frequency of plasmas, lie within the fre-
quency range of the exciting sources. Different fre-
quency components of the signal are absorbed and
reradiated in different amounts, with the result that
different frequency components propagate with differ-
ent velocities. The waveform of the signal is distorted.
On the other hand, if the characteristic length of the
medium, e.g., molecular dimensions, lattice constants,
Debye radius, is comparable to the wavelength of the
wave we are studying, then spatial dispersion occurs.
Weak spatial dispersion happens, for example, in
birefringence, longitudinal waves, and Cerenkov
radiation.?® In some more complicated media, e.g.,
plasmas under certain conditions, strong spatial
dispersion occurs.

In Sec. 2 an appropriate form of the constitutive

relation for slightly inhomogeneous and slowly
varying anisotropic media with both spatial and
temporal dispersion is first introduced. The particular
form was obtained through the study of the problem
of electromagnetic wave propagation in slightly
inhomogeneous and slowly varying anisotropic warm
plasmas. In such a medium, the constitutive relation
is obtained in Appendix A by solving the linearized
Boltzmann equation with the aid of the method of
characteristics. As a by-product of such a study, it is
found that, for homogeneous, time-invariant aniso-
tropic warm plasmas, the space-time-conductivity
tensor @(r,t), which is the 4-dimensional Fourier-
Laplace transform of o(k, w), is very simple.

The asymptotic parameter is then introduced into
the Maxwell’s equations and the constitutive relation,
to obtain hyperbolic equation of convolution type
with a large parameter. Then, by inserting an appro-
priate expression involving a “phase function’ and
an infinite series of “amplitude functions” into this
hyperbolic equation, we derive two asymptotic
governing equations: One relates the phase function
and the first term of the series of amplitude functions.
The other involves terms up to the second. The third-
order term is discussed in Appendix B to study the
limits of applicability of the asymptotic solution. As
an example, we show that these general asymptotic
governing equations reduce to the result obtained by
Bloomberg!® for longitudinal waves in warm plasmas.

By restricting ourselves to lossless media where the
operator is Hermitian in Sec. 3, we proceed as follows:
From the first of the asymptotic governing equations,
we derive a first-order partial differential equation
for the phase function, the “dispersion relation,”
which is solved by the method of characteristics. The
characteristic curves are determined by integrating the
characteristic equations or ray equations. The phase
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function is readily obtained from the eikonal equation.
The transport equation for amplitude function is
derived from the second asymptotic governing equa-
tion. Finally the initial value problem for the phase
function and the amplitude function are formulated.
The results obtained here are an extension of Lewis’s
treatment of wave propagation in temporal-dispersive
media? to the more complicated spatial- and temporal-
dispersive media. Let us also note that Weinberg!!
considered the case of wave propagation describable
by a general differential operator. The study of hyper-
bolic equations of convolution type can be considered
as an extension of his result.

In Sec. 4, transport equations derived from two
other forms of the constitutive relation and Maxwell’s
equations are obtained. One form of the constitutive
relation gives rise to a transport equation which
asymptotically satisfies energy conservation of the
wave. The transport equations obtained are interpreted
as generalized Poynting theorems for appropriate
physical situations.

Finally, in order to use the result here, initial
conditions for the ray equation, eikonal equation,
and transport equation are required. Some conditions
can be obtained directly from the initial data. Others
require the asymptotic solution of a *“canonical
problem,”” which is the asymptotic evaluation of the
exact solution for the corresponding homogeneous
media. Such solutions are ample in literature. We here
refer to Lewis’s work.?

2, ASYMPTOTIC GOVERNING EQUATIONS

In this section we derive asymptotic governing
equations for electromagnetic wave propagation in
spatial- and temporal-dispersive inhomogeneous and
slowly varying media, which are described by the
equations

’ 6062 or®

2 2
(6,.,-8— _ 2 )E =0. (21
Ox,0x, 0x,0x;

Summation notation is used throughout this work.
The summation over repeated indices is from 1 to 3.

The constitutive relation for inhomogeneous and
slowly varying spatial- and temporal-dispersive media
is proposed to be

1 1 0 —ja+co
[ae [~ [ o
(2 ’T)’)4 0 —c —ja—oo

xf ke r — 1, t — 1';k, o)

-0

Dyr, 1) =

x exp [j(wt' —k-1)E(r — ¥, t —t').
2.2)
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Here we have assumed E(r,7) =0 for t < 0. For
homogeneous and time-invariant media the dielectric
tensor &,(r, t; k, w) reduces to ¢;,(k, w), which is the
conventionally used time-harmonic dielectric tensor.
The modification for inhomogeneous and slowly
varying media is obtained from the study of electro-
magnetic wave propagation in anisotropic, inhomo-
geneous warm plasmas. In that particular problem,
the constitutive relation is obtained in Appendix A
by solving the linearized Boltzmann equation with
the help of the method of characteristics. Other
forms of the constitutive relation will be discussed
later in Sec. 4.

We proceed to derive asymptotic governing equa-
tions formally. The limits of the applicability of the
asymptotic solution is discussed in Appendix B. In
order to derive asymptotic governing equations for
(2.1) and (2.2), let us note that the asymptotic solution
for large |r| or ¢ of the corresponding homogeneous
and time-invariant media can be obtained by the as-
ymptotic evaluation of the exact solution in the
form of an inverse Fourier-Laplace integral.'> The
asymptotic solution is of the form

A™x, 1)

, (23
Ja" 23

E(r, t) = exp [—jS(r, )] X
with
A = O[max (|r|, ¢t)].

Equation (2.3) will be used as the “ansatz’’ of asymp-
totic solutions for inhomogeneous and slowly varying
media. Following Lewis,®> we make the following
transformation in (2.1), (2.2), and (2.3) by r— ir
and ¢t — At. The effect of this is to change the units.
Equation (2.1) remains the same, while (2.2) becomes

1 At @0 —jo+oo
[far[* e[ a0
(2 7T)4 o — —jo—o0

xf k& (Ar — 1", At — t'; k, w)

—a0

D(lr, it) =

x exp [j(wt' —k¥)E(Ar — ', 2t — 1').
(2.4)
The ansatz (2.3) is now of the form
A"(Ar, At)

2.5
o @2

E(ir, Af) = exp [—jS(Ar, 4] >
Equation (2.4) can be written as

AL 0
D,(2r, At) = f dr f d*r'e (Ar — X, At —t';r, 1)
0 —a0
X Efir — ¥/, At — t') (2.6)
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and
e (A, At;x', 1)

1 —jo+ow o
= f de. d*ke; (Ar, At; Kk, o)
(277)4 —Jjg—o —
x exp [j(wt' — k1)), t' >0,
=0, <0, (27)

Also, the inverse transform for (2.7) is given by
&,(r, At; k, w) =j dt’J~ dre; (A, At v, 1)
0 -0

(2.8)

Substitution of (2.5) into (2.6) and the expansion in
A yield

D(Ar, it)
At ©

= f dt’ f & {e, (i, At; 1, 1)
0 —0o0

- j'_l[t'(en)t + x‘,'(eu)a:v] + }
% exp {—j[S(r, Af) — 2718, — A7'S, x ]}
x [1+ (2]1) (St + 2812 'Xy + Sp o xix0) 4]

(5, o A 20 = A, 4 XD,
+ QI+ 28
+ %X (A Dgye] + })

X exp [—jlwt’ — k- 1))

WA Dz,
2.9
Introduce the local wave vector k and frequency
ky = 1718, (Ar, A1), o = —172S(Jr, A1), (2.10)
and the relationship
Z—Z—"(;{r, At K, o) =f dt'f Ar'(jx)e (A, At 1/, 1)
v 0 —®

x exp [—j(ot' —k-1)], (2.11)

%t o, 3 K, ) =f d’/f ' (—jt)e(Ar, A5 7, 1)
dw 0 —
X exp [—jlwt’ — k- 1)) (212)

With the aid of (2.8), (2.10), (2.11), and (2.12), (2.9)
becomes

D,(Ar, At) = exp [—jS(ar, At)]
X {éi,-(lr, At k, w)A% + -_li[%(—wt(gﬁ)m
J

+ 2(kv)t(€u)wky + 2 z (k )wy(eu)k ey

u>v

+ (kv)xv(a-,»)kvkv) A2

+ E DoAY — EDe(ADs,

+ &AL + [Eo — (Eij)kav]A?} g }
@.13)
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Inserting (2.5) and (2.13) into (2.1) and equating the
coefficients of (jA)~", one arrives at the following:

[6,k2 — kik, — w?c%,,(Ar, At; k, 0)][A%(r, 20)] = O,
2.14)
[B,k2 — kik, — wlc%,(Ar, At; k, w)][A}(Ar, A0)]
(002 Ok, _ %k )(A“) A + 20(E) AL
axv 0x

+ zwgij(A(;)')t + zw(kv)t(gij)kyA(;' + zwwt(gij)wA(;]

- §w20_2(wt(€ia‘)ww + 2(kv)t(€ij)mkv +2 Z (ku):cy(gij)kukv

+ (kv)mv(gij)kvkv)A?' — 0" (&Nl AD s — EDr (ADa)]
- w2c‘2[(€i:i)tw - (gi:i)kumv]A(; = 0. (2.15)

Equations (2.14) and (2.15) are then written in a
compact form as follows:

(L J[AS(Ar, A)] = 0, (2.16)
176 (L, 8 (0L,
L[4}, At +{—(_u) - ~<__v)
(L[4 )l 513\ 5 P
2 (oL, 0 (oL,
—|== A%Ar, At
+ at(aw) ox, (ak )jl[ oA, A1)
dw & Ok, dx,
where
Lii = 6“’(?, - kikj —_ 0)2 h2~ (}.l’ lt k (U) (2.18)
6 0 d
— == — + (k) —, 2.19
5 at+“"aw+(")‘aku (2.19)
o 0 0
—=—+o, > (2.20
ox, ox, T P T Bng 220)
k, = A7'S, (I, A1), @ = —A7IS(Ar, Af). (2.10)

After having obtained asymptotic governing equa-
tions (2.16)-(2.20), let us remove the large parameter
A from these governing equations as follows: Intro-
duce Ar —r and Az — ¢, so that r and r are measured
with the original unit. The asymptotic governing
equations are then given by

(LAY, ] = 0,
LAY 0 + [ (aai) ) (%Lk_)
+ g(?a%) ~ % (%ff)]m‘xr, 0

oL;;04% 9oL, BA"
Oow Ot ok, ox,

(2.21)
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with
L“- - 6,' 'k2 - k,-k]- - w26_2€”(l', t, k, CO), (223)

i*u

ko =S, ©=-Sr) (224

Equations (2.19) and (2.20) remain unchanged.

We have derived asymptotic governing equations
for the specific problem of electromagnetic wave
propagation in spatial- and temporal-dispersive,
slowly varying, and inhomogeneous media. However,
the asymptotic governing equations obtained are
quite general. In particular, let us show that (2.21) and
(2.22) are valid for the problem of transient longitu-
dinal wave propagation in inhomogeneous, slowly
varying warm plasmas. This problem has been
treated by Bloomberg!® based on solving the linearized
Vlasov equation with the aid of the method of
characteristics. To - obtain asymptotic governing
equations for this simplified example from (2.21)
and (2.22), let us note that the problem of longitu-
dinal wave propagation is a scalar problem governed
by the approximate dispersion equation

2 2
20D ey i, @25)
w w

Lx, f) =1—

with o, the plasma frequency

wp(x, 1)* = N(x, t)et[me, (2.26)

and (¥(x, t)*) the mean square velocity of electrons

(V(x, )% = «Te(x, t){4m, 2.27)

where N(x, t) is the density of electrons, « is Boltz-
mann’s constant, T,(x, #) is the electronic temperature
of plasmas, and m is the mass of the electron,

By using (2.25), (2.21), and (2.22), one obtains the
following equations:

L(x, NA°(x, 1) = 0, (2.28)
1‘129 L(x, HA'(x, 1)
0A° 0A° [Zw Ow 310w 2Udw
o4 oA L |2@p 00y J10® LU il
+at+Uax w® ot 2w 0t w 0x
LR VYA ) O
2k, 0x  (VH ox 3\ o ’
(2.29)
where
dw 3k, ,
= — = — (V. 2.30
. w v (2.30)

For w~ w,, (2.29) reduces to that obtained by
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Bloomberg except that there are two extra terms
1{ U Vo
i
3W®/ ot

The first term was ignored in Bloomberg, and the

second term cannot be obtained unless a series form

solution is assumed. Bloomberg did not solve (2.28)

and (2.29), while the solution in Sec. 3 for the general
case can be easily applied to this special case.

and A % L(x, N4,

3. ASYMPTOTIC SOLUTIONS OF A GENERAL
HERMITIAN SYSTEM OF EQUATIONS

In order to have a nontrivial solution A° for (2.21),
it is necessary that

L(r,t;k,w)=detL2.j=(), kv=_a§_, w=_a_S'
ox, ot
(3.1

Let us assume that L ; is Hermitian, i.e.,
L¥(x, t;k, w) = L(r, 1; Kk, o). 3.2)

It immediately follows that, for some k, w, r, and 1,
(3.1) defines a functional relation, which is called the
dispersion relation. Assuming nondegeneracy for
matrix L., one writes R(r,7;k, w) as the null
eigenvector:

L,R,=0.

For brevity of formulas we choose the normalization
constant such that

3y
ow
The eigenvector R characterizes the polarization of
the wave.

The dispersion relation (3.1) is a first-order non-
linear partial differential equation for the phase func-
tion S(r,¢) and can be solved by the Hamilton-
Jacobi theory. One thus introduces the characteristic
equations or ray equations

(3.3)

dx, 3L di_ oL

dr 3kv dr 3w (34)
dk, _ 0L do _OL
dr ox,” dr o’

where 7 is the parameter along the ray. On using the
parameter ¢ to replace T, one obtains

dx, = 2’: _a£ = _a_w =V

dt ok ow ok,

dk oL /oL )

b RN e , 3.5
dt  0x,/ dw ox, @:9)
do _ _ LIl _ 3w

dt ot/ dw Ot
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where V, is the group velocity. The phase function
satisfies the eikonal equation

¢_ds_2s 35
dt

95 = —w+ k)Y,
a T T e

oL (oL

_ k___

‘ok de” (3.6)
Note that (3.5) and (3.6) can be solved numerically.
They have already been given by Weinberg!! for the
case of a general differential operator L(r, —jV) for
the time-harmonic problem. The spatial- and temporal-
dispersive, inhomogeneous, and slowly varying me-
dium treated here is an extension of his. Without
spatial dispersion, (3.6) and (3.5) reduce to the ray
equation given by Lewis.?

Before proceeding to derive the transport equation,
we give an alternative formula for the group velocity.

Taking the scalar product of R} and L,R;, one
obtains
Differentiation of (3.20) leads to the following:
_OL; - \0w  _,0L;
R;—L’R-)—-+R:‘—’—’R.=0, 3.8
( do ok, ok, G9
ow _woL.. _ ]_ oL., _
V,y === ——R:‘—L’RA/R*—”R.
> Ok, k, 1" 0
—«OLy; _
= —Rf 39
i ak‘. H ( )

With the aid of (3.9), we are ready to derive the trans-
port equation.
Again, assuming no degeneracy, we let

A° = oR. (3.10)
First, taking the scalar product of R and (2.22) leads
to
R[22 - 2 (2]
2L\ ow /| 8x \ok,/ 1
R* (62L 2L, )
o0 Ox,0k,)
0 0
+ R:(%{B_A_, — a.’:&%) =0, (3.11)
dw o ok, ox,

where use has been made of the fact that

RFL;;A} = (A7*LyR)* = 0. (3.12)
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Inserting (3.10) into (3.11), one obtains

D 2
{—[-(QL—) - -—(a"”)]“ S Ga)w)
oo dk otdw
=% OL; — Oo
—~RFr=¥R =
ok, ' ox,
2tk

(R*aL oR, 5=0
' ok, ox, e

ow Ot
On using (3.3) and (3.9), we arrive at

(3.13)

(3.14)

where V, is given by (3.9) and « is defined as

o= TG - G
dw ok, \ ok, !

E ﬁlﬂ _afllf_ R*

(azaw - ax,akv) !

; b . @315
dw Ot ok, dx, (3.13)

Attempting now to solve the transport equation,
we start by deriving a differential equation for |g| as
follows:

|0’l2 = 0’*0’, (316)
dlo]* d d
= et =~ ol 617
d|o|
— T+l =0, (3.18)
with
& (0L, 8 (OL\7 =
* __ R* 'j) — ——(——'Z)le
*+« [5t( ow ox, akv J
~x(0Ly L\ -
Rz“(—J — )R
& e ek )
_.0L.. 6R, éR*aL _
R:‘—'—’—-—] lJR
+ dw ot ot ow
«OL;; 8R, OR!OL,
—H 4 2R (3.19)

Yok, 8x, ox, Ok

On observing the symmetry of « 4 «*, one writes
(3.18) in the following suggestive form:
|| 1{ov, ok, oo o = 0. (3.20)
= =2 __ Vigl =
2\0x, 0ok, ¢
Here we have redefined

RIr, t; k(, 1), w(r, )] = R(r, 1);
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as a result,
%mummw@m=§ma
R ke ), 0 0] = R e,
ox, ox,

The divergence of V,, is given by

. = — i(R'* oL, R:i)
ox, ox, ok,
ox, ok, 't ox,\ok,/
oL,;; OR;
* 1 5) 3
F—— . (321
' ok, 3xvi| (3:21)
Also,
oL,;
k,=R!—"R,, (3.22)
ox,
oL,
p = —R}—2R,. 3.23
i at ¥ ( )
Equations (3.22) and (3.23) are derived in the same
way as (3.9).

To integrate the transport equation, let us invoke
the following lemma.

Lemma®'2: If the differential equations dx,/dr =
ng admit a solution x, = x,(¢t, I), » = 1, 2, 3, de-
pending on the three parameters I' = (y, 7, ¥s),
then the Jacobian j(z, T') satisfies

—dl I‘—agv I = det 0%, 3.29)
- t, — s 3 t’ — — R .
dt njit, ) 0 UCRY) ¢ (ay,-) (

v

Applying this lemma to (3.20), one obtains

+ a_a)> =0. (3.25)

1 (%
ok, Ow

4 o o — L
~ In{lol i, DI} =2

This is integrated to give

i(to, TV ft 1 (akv aa,)
= |o(te)l {———= )exp| —-{\— + —) d~.
()] = lotio) (j(t, 1‘)) P 1 2\0k, Odw T
(3.26)
To derive the phase angle of o, we set
o = |o] exp (—jb). (3.27)
Substitution of (3.27) into (3.14) gives
dlo] .  do
ool 1 S = =0, 3.28
it Jlaldt+<xl0| (3.28)
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The imaginary part of (3.28) is
do

— —(Imw)f =0, 3.29
5~ mo) (3.29)
which is integrated to yield
14
6 =06+ | Imadr. (3.30)

to
Since A® = oR and o = R}(JL,;/0w)4}, (3.26) and
(3.30) lead to

i(ty, D ft 1ok, 0@\
0= (o] ({8 2) 10
0= 1)) 2ok, T3g) —/me 4
oL,

X [R;*—”A‘;] R@). (3.31)

ow to
Equation (3.31) gives the amplitude function A%(zy)
at any time for any ray in terms of the initial ampli-
tude function A%(t;). The exponential term in (3.31)
provides the term due to the inhomogeneity,
$[(0k,/ok,) + (0w[0w)], and the phase shift, Im a,
along the ray. Since the Jacobian j(#, I') measures ray

density, it appears in (3.31).

4. THE LAW OF ENERGY CONSERVATION
AND OTHER FORMS OF THE
CONSTITUTIVE RELATION

In the previous sections, asymptotic solutions of
wave propagation in spatial- and temporal-dispersive,
slightly inhomogeneous, and slowly varying media
with a particular form of the constitutive relation
has been obtained. In this section, we focus our
attention on the transport equation and give its phys-
ical interpretation. Competitive transport equations
based on other forms of the constitutive relation are
discussed also. We begin by deriving a transport
equation for slightly inhomogeneous and time-
invariant media where energy of the propagating
wave is conserved.

A. A Transport Equation for Wave Propagation
in Inhomogeneous and Time-Invariant Media
Based on Energy Conservation

Let us write the conservation law for the total energy
of waves in its differential form in the phase space:

ou 0 d
e—— + —_ —_—
ot 0x, ok,
with u as energy density. Here we have assumed that
energy of the wave is conserved.
In the physical space there is only one value of
k(r, ¢) at the point r, 7. Therefore, u is given by

u(r, t; k, o) = U(r, t; k, w)d[k — k(r, 1)].

(Vo) + 5~ (kyu) = 0, 4.1)

4.2)
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On carrying out the integration of (4.1) with respect
to Kk, one has

aU
+ =, 0+ —¢k,0)=0.
ot 9x, ( ” )+akv( )=
Note that the differentiation is carried out with
respect to x, with k as constant. Functions which
appear in (4.3) are

4.3)

U= Ulr, t;k(r, 1), o], 4.4
d _.O0L.,
Yo _prlipg vy, 4.5)
dt ok,
dk —e OL,; _
*= R —R, =k, (4.6)
dt ox,
R =R, ; k(r, 1), 0], 4.7
Lij = L“'[l', t; k(l', t): w]' (48)
Redefining
Ulr, t; k(r, t), 0] = U, 1),
R[r, 1;k(r, 1), 0] = R(r, 1), (4.9)
one obtains
ou ou oU ou ., oU
— 4V —=— f k,—. (4.10
8r+““a at+ ' Ox, + ok, (“-10)
Equations (4.3) and (4.10) lead to
U U v, ok, U—o @i
PR > ax. T ax, (ak\.) =0 @I

This is then the transport equation for energy-
conservative propagating waves.

Let us write (4.11) in the form of the Poynting
theorem. Let 6R = E and ¢*R* = E* as an approxi-
mation, and let ¢®L;;/w replace L,;, since they are
equivalent; we then have

oUu ok
— 4 divS = —(—“)U, 4.12
ot v ok, (412)
where
27,2
U= —a-(EfwéijEj — ck
dw w®
2
+ = (k x E*)(k x E)) (4.13)
w
and
2
S, = —a—a—(E*a)e”E, - g—k—E*E
CU

+ C—2 (k x E¥(k x E)). (4.14)
o

In homogeneous media, the right-hand side of (4.12)
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vanishes. Therefore, for wave propagation in inhomo-
geneous media, the Poynting theorem is different
from that for homogeneous media in the case when
the energy of the propagating is conserved.

In the problem of wave propagation in inhomo-
geneous temporal - dispersive media which Lewis
studied,? the transport equation can easily be shown
to satisfy energy conservation. To do this, we con-
sider the temporal-dispersive operator

Li; = k,Aj; — wé (o, x,). (4.15)
The group velocity formula is
V,, = RFAR;. (4.16)
Also,
k, —R* — [k,A" — wé(w, x)IR;. (4.17)
ox,
Equation (4.11) yields
v + Vo, R aAvR U=0. (418
dt  0x, Yox, (4.18)

For the lossless case, (L.3.7.6) of Lewis is equivalent
to (4.18).

B. Transport Equation Derived from the
Constitutive Relation (2.2)

Let
= |o|?, (4.19)
Then (3.33) can be written as
Wy Wy _ (_%Hifaﬁ_@)u @.20)
dr  0x, ok, ok, OJw
Now, the first term on the right-hand side,

—(0k,|0k,)U, is due to the change of the wavenumber
k of the wave, while [2(0k,[dk,) + (0d/dw)]U is
the energy supplied by the medium to ensure energy
conservation of the whole system, the wave and the
medium. Therefore, the propagating wave does not
form a closed system.

C. Transport Equations Based on Other Forms of
the Constitutive Relation

For the constitutive relation (2.2) assumed in
Sec. 2, the characteristic constants are evaluated at the
fixed point, ie., &,r —r', ¢t —t";k, w) has been
assumed for the inhomogeneous dielectric tensor.
There are other ways of incorporating the inhomo-
geneity. For example, we can evaluate the character-
istic constants at the position of the displacement
vector, i.e., &,(r, 1; k, w), or the mean value of the
position of the electric field and that of displace-
ment, i.e., &,(r — r’[2,t — t'[2; k, )13
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These modifications of the constitutive relation
do not change the eikonal equation. However, the
transport equation is different in each case. We shall
give the transport equation for each modified form
of the constitutive relation. Let us begin with the
constitutive relation where the dielectric tensor is
evaluated at the position of the displacement vector:

Dyr, t)

—Jjo+o0
(2ﬂ)4fdtf &’r ’fn_ dwf d’ké; (r, t; k, ®)

x exp [jlwt' —k+¥)E(r — ¥, t — t'; k, w).
(4.21)
Employing a procedure as given in Sec. 2, we obtain

[L;;][49] = O, (4.22)

e+ f3) 5 o)

0 (0L, 0 (BL,., 0
t —|—) (4
6t(3w) T o 6kv)]( 7
0L, 045 0L, 04}
—Hd_ Hd_0, (423
+ 0w Ot ok, ox, “23)
The transport equation derived from (4.23) can be
easily shown to be
akv 0>

Z1o J ey )it =0. @29
ol + — |0l = U .
(3x ok, aw
For time-invariant media @ =0, (4.24) satisfies
energy conservation, since it agrees with (4.11).
On the other hand, taking the constitutive relation
with the dielectric tensor evaluated at the mean value
of the position of D and that of E,

© —ja+o
dr f do

—Jjo—o

Dyx, 1) =

¢
dt’
4 [1]

xf d*ké (r — 3, t — 315k, o)
x exp [j(wt' — k-1)Er — 1, t — 1),

(4.25)
one arrives at the transport equation
||+1 Yo 0. (4.26)
- - ol = .
2 ox,

Therefore, a gencrahzed Poynting theorem for in-
homogeneous media retains the same form as that
for homogeneous media:

a—U+d1vS—0

dt

U and S are given by (4.12) and (4.13), respectively.
In concluding, three different forms of the constitu-

4.27)
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tive relation for incorporating inhomogeneity and
slow varyingness in spatial- and temporal-dispersive
media have been discussed. Maxwell’s equations,
together with one form of the constitutive relation
(4.21), satisfies energy conservation asymptotically.
However, since energy of the wave is not conserved,
other forms of the constitutive relation are preferred
for situations where the wave itself does not form a
closed system. In particular, the constitutive relation
(2.2) is most suitable for describing inhomogeneous
plasmas in quasi-equilibrium, for it is derived through
the microscopic consideration. This study somehow
limits the accuracy of the conventional derivation of
the equation of radiative transfer based on energy
conservation,
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APPENDIX A: THE CONSTITUTIVE RELATION
FOR ELECTROMAGNETIC WAVES IN
ANISOTROPIC, INHOMOGENEOUS
WARM PLASMAS

In this appendix we show that the constitutive
relation for electromagnetic waves in anisotropic,
inhomogeneous warm plasmas has the form assumed
for general media.

The phenomenon of electromagnetic wave prop-
agation in plasmas is determined by Maxwell’s
equations and constitutive relations. The constitutive
relations are determined by the composition of
plasmas, and can be obtained for different models:
The simpler cold model is based on the electronic
orbital motion. The more complicated warm model
can be arrived at either in a crude approximation by
introducing the pressure term into the electronic
orbital motion used in the cold model or in an
elaborate manner based on the kinetic theory by
taking into account of the velocity spread of electrons.
We derive the constitutive relation using the latter
approach, but ignore the motion of ions for brevity
of formulas. Briefly, the well-known method of
characteristics® is used to solve the linearized
Boltzmann equation. Then the use of a simple trans-
formation leads to the space-time-conductivity tensor,
which has not been obtained before.

Consider the collisionless Boltzmann equation for
the electronic distribution function f:

. Vf——(E+va) f =0,

" (A1)
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where B includes the externally applied magnetic
field B, = B,(r, t)l, and the magnetic field of electro-
magnetic waves and E is the electric field of electro-
magnetic waves. Assuming f = fy + f1, with f; as a
small perturbation to the equilibrium Maxwellian
distribution, we reduce (Al) to

afo afo € 'afo
—_— » —_—— . — B »/ = 0 A2
at+v or m(vx 0 ov (A2)
and
of o e of of,
—_—  —— — B . —_— E - . A3
T X B = E (AY

Obviously, (A2) is satisfied by a Maxwellian distri-
bution fy:

P P exp[—2V2 + Vi + Vi)
" emt v

where, for inhomogeneous and quasi-equilibrium
plasmas, the mean square velocity is

V(r, 1)) = «T.[4m.

(Ad)

b

(A3S)
Here

N(r, t) is the density of electrons,
« is Boltzmann’s constant,
T, is the electronic temperature of plasmas.

The solution of (A3) is given by

{1 o
L, v, 1) =f dtof d"rodav(,g(ro » Yo, tp)
0 —ao
X 8(r — R)§(v — V),

%o
g(ro, Vo, to) - “E. v,
Under the influence of the external magnetic field,
By(x,0)l,, R(ry, vy, 1), and V(ry, vy, %) are the
classical asymptotic position and velocity of electrons
in terms of their initial conditions r, and v,. Let us
assume that the plasma is not very hot so that electrons
with large gyrating radius r, are negligible, i.e., for
most electrons r, = [Vol/wy = |mvefeB,| is very
small. Therefore, the assumption of weak inhomo-
geneity of the magnetic field leads to

(A6)
with

(A7)

wp(to + mvo X L[eBy, 1) ~ oK, 1). (A8)
Then, R and V are given by

sin wgT

R=r1+ v,

Wi

l1—coswyr

+ v x]z“——H 0,7,
p Wy (]

=r0+ RI,
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V= vy, COS WpT + Vo, X L, sin wyT + vy.71,,
Yo, = Vo — D W
—1
o~ wg(Ty, 1) = eBy(ry, m™,
T=1— to.

(A9)

To see that (A6) is the solution of (A3), one simply
differentiates (A6) with respect to ¢ as follows:

fl(rvt)

=£wdar0d3vog(r0, Vo, DO — 1)V — v,)
+ J:d tOJ;Zdarodsvog(ro 2 Vo to)
X @ [6(1' — R)o(v — V)]

=g, v, 1) +f dt, dsrod Yo

R D 15— —
x (a o 130 = BB — V)

avV o0 _ _
+ 2.2 - Ve R))

¢ ©
= g(r, v, t) —f dtof dryd’y,
0 —a

X (v 'a% [5(r — R)]6(v = V)

LV x By 2 [6(v — V)Jo(r — R))
m ov

e

d 0
= gV, 1) — (v-a—r ~ Ly B.,-a—v)fl(r, v, 1).

(A10)
Therefore, the current induced can be expressed as

I ) = —e f Vi, v, Odv (A11)

=_= f dt, f d’ry d>vV(r,, v,, zo)%
m Jo —o0 avO

- E(rg, 1)0(r — R). (A12)

The last step follows from the substitution of (A6)

into (All) and a subsequent integration with respect

to v. Let us now change the variables of integration

from dt,d®, to dt,d®R’. Writing R’ in terms of v,
explicitly, and vice versa,

sin wyT 1 — cos wgr
X = vl)a; - v‘)y ’
Wy g
1 —cosawyr sin wyT
v H H
Y =1, Vo, , (A13)
wH wH

2\ =01
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and
iy sin w7
Uoz = X
2(1 —cos wyT)\ wgy
1 — cos wyr
.. S y’ ,
Wy
(UH 1 — COS CDHT , (A14)
vov = —_ X
2(1 — cos wyT) Wy
Sin (UH'T'
+ y’),
W
voz = 7‘_12',

one easily obtains the Jacobian of the transformation

0y
2r(1 — cos wyt)

a(UOz’ Ugy UOz) —
a(x', yl, Z’)
Then the integration of (A12) over r, leads to
Jl(r9 t)

2 t 0
=-= f dt’f dR'V[r — R, V(R', t — 1, 0p), 1']

(A15)

af"[r—R’ vWR',t — t, wp), ']
avo
ok Er — R, 1),
2(t — t')[1 — cos wy(t — t)]
(A16)
with
wg = wgr — R, ). (Al7)

It appears that (A16) has a singularity at ¢’ = 0.
However, a closer examination with the aid of (A4)
and (Al4) gives a contrary conclusion. Let us now
generalize the well-known convolution integral to
the weakly inhomogeneous medium by introducing
additional variables into the kernel:

t )
J/fr, t) =J dt’f dro@,t';r—r,t —t)-E,t)
0 —0
¢ <]
=J dt’f drox—r,t—1t;r,t)
0 —00

‘Ed—1r,t—1)
It immediately follows that

(A18)

or—r,t—1t;r,t)
= —mV[r -1, v, t, wg), t — t']

fo[r—r Yo', t', wg), t — 1]
avo
_B_H____
2t (1 — cos wyt')’
where f, is given by (A4) and the characteristic

(A19)
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constants are
t), N=Nx—1r,t—1),
=V —r,t—1t)P. (A20)
Thus, through the simple transformation (A14), we
have arrived at the conductivity tensor in r — ¢ space,
which has not been given before. The simplicity of
the form is rather striking. Even for weakly inhomo-
geneous plasmas, (A19) does not involve any integra-
tion. To show that the space-time-conductivity tensor
(A19) derived for homogeneous media is equivalent
to the conventional time-harmonic conductivity

tensor, let us apply the four-dimensional Fourier—
Laplace transformation to (A19):

ok, »)
=f dt’f d’r' exp [—j(wt’ — k -1)]o(, t')
0 —00

=f°°d¢'fw d*r’ exp [—j(wt' — k- r’)](_ f)

x (Vi o 22 Yo 2 ot 1) 37— )

2t'(1 — cos wgt")
(A21)
Transformation of variables of integration from

r’ into vy, with the transformation given by (Al3),
and the replacement of 7 by ¢’ lead to

o(k, ) =J-mdt’f0o d®vy exp {—jlwt’ — k - T'(vy)]}

wg = wyl®—1,1—

x ( m) (V(vo Yo (vo)) (A22)
Also, let
v, = v, COS «,
Then

vy, = v, €08 (¢ + wyT),

v, =v;sina, v,=v. (A23)
vo, = vy sin (@ + wyT).
(A24)

Transformation of variables of integration from v, to
v and use of (A24) give

ok, o) =f dt’f d¥v
0 —o

xexp(

1) 4
X [Sin (a + (/)Ht,) — Sin a] + Jk"v"a)Ht,)
X [U.L cos (a)] + vy Sin ((X) l” + v”]z]

X (cos(oc + wgt) 22 f°

avl
+ sin (o + wHt)%l + aafo 1
vy

- ) (A25)
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This is equivalent to (10-39) of Montgomery et al.1

Finally, let us note that the inhomogeneous and
slowly varying characteristic constants wz, N, and
(V%) are evaluated at r — r’ and ¢ — ', This agrees
with the general form (2.2) for the constitutive
relation in inhomogeneous, and slowly varying,
spatial- and temporal-dispersive media.

APPENDIX B: LIMITS OF APPLICABILITY
OF ASYMPTOTIC SOLUTIONS

Previously, in arriving at (2.14) and (2.15), we
have expanded the governing equations (2.1) and
(2.4) up to the second-order term. In case one pro-
ceeds to the third-order term, the equation obtained

is
g () _ 0 L)
77 olet\ dw dx, \ ok,

azLi:i _ a2Lii :|A1

L‘L'j

i

90 0x,0k,

OL,; 0A; OL,;0A;] 0

__’l___l___!__7=__£__A.’ B1
t e & ok, ox wis (BL)

where £;; involves many second-order terms.
The solution of (B1) for 4} is

0

At
Al = A8 f 67'RM.(oR,) d7, A% =oR,, (B2)

where we have taken only the force term in the solu-
tion, since the solution of the homogeneous equation
for Aj has the same form as that of the equation for
A3,

To satisfy A« Adl, it s necessary that

At
f 0 'R}, (0R,) dr & A (B3)

0
Equation (B3) reduces to the following two condi-
tions: First, at caustics the Jacobian j(z, T) is zero.
Then integration by parts leads to the appearance of
j(t, T') in the denominator of the integrand. As a
result, (B3) is violated. Therefore,

j(t, T) 5% 0. (B4)

One can reduce the inequality (B3) to some simplified
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inequalities. However, such a calculation is very
tedious. We shall give a simple estimate. Let the
medium be slowly varying:

0¢;;

0¢;;
Rfa—va,., R} a—;’ R; K 1.
Then each term of (B3) can easily be shown to satisfy
the inequality. Equation (B5) is then the second
condition.

Finally, in contrast to geometrical optics in non-
dispersive media, these conditions are not sufficient.
In order that ansatz (2.3) is an assumed solution for
dispersive media, it is imperative that

c/wcha.r << ).,

(B5)

(B6)

lchar s
where

Acnar is the characteristic length of
spatial dispersion,

®cnqr 18 the characteristic frequency of
temporal dispersion.

Their significance has already been discussed in the
Introduction. Equation (B6) is required so that the
first term of (2.3) gives dominant contribution for
homogeneous and time-invariant dispersive media.
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Methods derived from the theory of several complex variables are used as a means of analyzing a class of
two-dimensional transport problems in a scattering-and absorbing quarter space (0 < x,,0 < x,, —0 <
X3 < o) described by a linear, one-speed Boltzmann equation. Using Fourier transformation and

the Bochner decomposition, the multivariable analog of the Wiener—Hopf factorization, we find the
Green’s function in transform space, which solves all source problems having a solution bounded at
infinity. The transform of the density asymptotically far from the corner (x, = x, = 0) is determined
explicitly, while the remainder is given in terms of the solution to a pair of Fredholm equations.

1. INTRODUCTION

For the past forty years, the Wiener-Hopf tech-
nique* has proven to be a powerful tool in the analysis
of integral equations over the half-line with a difference
kernel. For that reason, one of its many applications
has been to one-speed, linear transport in a half-space.?
The method is based on Fourier transformation and
relies heavily upon the theory of functions of a
complex variable.

In this paper, we use a similar approach generalized
to two complex variables to study two-dimensional
transport in a quarter space. Here the basic integral
equation is over a quarter plane, with the kernel
depending upon distance in the plane. In Sec. 2,
double Fourier transformation of the transport
equation yields a two-variable Wiener-Hopf problem
for four unknown transforms corresponding to the
densities in each quarter space. A similar mathe-
matical problem arises in the theory of electro-
magnetic wave diffraction from a right angle dielectric
wedge. Although an exact solution to the diffraction
problem is not yet available,® the Bochner decom-
position,* the multivariable analog of the Wiener—Hopf
factorization, was used in one of the analyses® and is
found to be a useful tool for our analysis as discussed
in Sec. 3. In Sec. 4, the asymptotic contribution to the
transforms is found explicitly by one-dimensional
Wiener-Hopf analyses and is then subtracted, yielding
an equation for a new set of four unknown functions
representing the transforms of “transient” densities
which are nonnegligible only near the corner. The
properties of this new equation allow, by subsequent
manipulations in Sec. 5, the solution to be expressed
in terms of the solution to a pair of Fredholm equa-
tions derived in Sec. 6. Analogous to the one-dimen-
sional problem for a finite slab,® these Fredholm
equations appear to represent the interaction of the

“transient” densities in the two quarter spaces ad-
jacent to the scattering and absorbing quarter space.
It is shown that this pair of equations may be solved
by iteration.

2. FOURIER TRANSFORMATION OF THE
TRANSPORT EQUATION
We consider one-speed neutron transport in a quar-
ter space (0),0 < x;,0 < x,, —0 < x3 < o, with
isotropic scattering and a given source distribution
S(r) = S(x;, x;). The integral transport equation for
the neutron density p(r) is

—lr—r| '
pr) =c f —,—Z[P(r') + i(r—)} dr, (2.1)
g4mw|r—1r] c

where distances are in units of a mean free path, r and
r’ are three-dimensional vectors, and ¢ is the mean
number of neutrons emitted per collision. Letting
p(r) = p(x1, x5), S(r) = S(x;, x,), and performing the
xg integration, the transport equation (2.1) becomes

plxy, X2)
=[xt dx = x(ptrg ) + 22,
0 Jo c
(2.2)
where [x — x'|2 = (x; — x1)? + (x; — x3)? and the
kernel X has the integral representation
1 [® e™dt

K(s) = —

e aend 2.3)

For convenience, we now consider the integral
equation for @(x;, Xy), —© < Xy, X, < ©, with a
specific inhomogeneous term as follows:

o0 @0
P, x2) = f f dx] dxiK(j% — X' Dgx/, x3)

+ {CXP (—ax, — azxy), X3,%x, >0

- . (2.4)
0, otherwise
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If ¢ is determined for arbitrary a, and @, in a strip  where the @, are the double transforms of the ¢,:
in the complex plane, then ¢ plays the role of a

Green’s function in transform space. Specifically, if in Ok, k) = f+w +wdx i
(2.2) we let ¥(x,, x,) denote the inhomogeneous term At T2 S
@ (o X exp (ikyxy + ikoXo)@i(xy,%5), i=1,"",4, (2.8)
Veax) = [ [ "axt asikex - Xt x)
0o Jo and
and P(a,,a,) be the double Laplace transform of R(k) = (tan~%)/k. (2.9
V(xy, Xa),
P(ay, ay) With ¢ < 1 and Re (4, a5) > 0, ¢,(x;, x,) will be

" a bounded function of x, and x, . From (2.3) and (2.4),
=f f dx, dx, exp (—ayx; — agxg)V(xy, Xo), the @, will be analytic in the following sets of half-
0 Jo

planes:
then we assert without proof that the solution to (2.2)
may be given in terms of ¥ and ¢ as follows: ®,:{Imk; > 0, Im k, > 0},
1\ ®y:{Imk, < 1,Imk, > 0},
o) = () [, [ ot msannad Oy:{Im, < 1, Tm k, < 0)
x V(—ay, —a,) da, da,, U {lmk, <0,Imk, < 1}
where I'; and T, are vertical contours to the left of all U {(Im &y)? + (Im ky)* < 1},

the singularities of ¥’(—a;, —a,) and to the right of all G, {Imk, >0,Imk, < 1}.
singularities of ¢(x;, X3; ay, a3) = @(xy, Xp).
We now use a simple device to transform the integral ~ This is illustrated in Fig. 1. Note that all four of the
over the quarter plane to an integral over the whole @, have a common tube of analyticity:
(%1, x3) plane so that we may make use of the con-
volution theorem of Fourier transforms. Let Te = {lmk; > 0,Im k, > 0}

@i(X1, X3) = @(xy, X3)%:(X1 5 Xa), (2.5) N {Im ky)® + (Imkp)? < 1. (2.10)

where y; is the characteristic function of the ith The goal is to determine ®,(k,, k,), which by

quadrant: inverse Fourier transformation gives the neutron

, elsewhere ; \ \ ‘m;z '&

1, —0 <X <0, —0Lx<0 \
elsewhere ’ \ ziilync \\\ " # analytic
, 0 <®w, —0<Lx<0 N \
2a(x1, Xp) = { ! : . \\ \ \

Xa(x1, Xg) =

1, 0<x < 0<x< o density in the quarter space. What we have, then, is
xl(xl s x2) =
elsewhere
I, —0<x<0, 0<x<
2201, X3) {0 ! ? '

0, elsewhere

& /
\OQ

In terms of the ¢;, Eq. (2.2) may be rewritten as
P+ @+ 93+ @4

, 9
- cf f dxj dxiK(Ix ~ X' )py(x, x3) ////// P X \\\ \\ \\
+ 2(x1, X2) €Xp (—a;x, — ayx,). (2.6) // 3 . )Q& \ é analytic
Taking the double Fourier transform of the above / 3// / / f>\>( \
equation, we find ;/ / / / 4 \\\
{1 — cRI(K + KOk, k) K/z\
_- Dy(k, ,2k2) 00, ko /’ AR \

Fig. 1. Domains of analyticity of the ®(k,, 2) with Re q,,

— Oy(ky, ky) + 1f(a, — ik)ay — iky), (2.7) Rea, > 0.

Ana thclty N
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the analogous Wiener-Hopf problem for two com-
plex variables. Instead of two unknown functions
which are analytic in a common strip and each
analytic in opposite half-planes, we have four func-
tions {®,,i =1, 2, 3, 4}, which are analytic in the
common tube T, each being analytic in a respective
set of half-planes. Unfortunately, the factorization of
the function | — ¢K, although possible and very
useful, as will be shown, does not seem to yield a
closed form solution, as it does in the one-dimensional
problem.

3. BOCHNER DECOMPOSITION OF 1 — ¢k

In the analogous one-dimensional problem, one
factors the function

Alk) = 1 — cK(k)

into a product of two functions H*(k) and H(k),
respectively analytic in the upper and lower & plane
with a common strip of analyticity corresponding to
the domains of analyticity of the unknowns ®* and
®-. This is the Wiener-Hopf factorization, which, of
course, is the key to the Wiener—Hopf technique.
Subsequent manipulations and application of the
Liouville theorem yield the closed-form solution to
the one-dimensional problem.

In the present two-dimensional problem, we intend
to make use of the factorization of

AR + KDY =1 — k(K2 + k)Y (3.1)
into a product of four functions:
A = H H,HH,, (3.2)

where, as we shall see, the H; have the following
regions of analyticity:
Hi:{Imk;>0,Imk, >0 UT,,
Hy:{lmk, <0,Imk, >0} UT,,

Hofimk <0 Imk, <O} UT,, Y
Hi:{Imk,>0,Imk, <0} UT,,
where T, is the tube
T, = {(Im k)* + (Im ky)* < #p},  (3.3b)
and »x, satisfies
1 — (¢/xy) tanh™ %y = 0. 3.9

The conditions for the existence of such a factor-
ization and the method of calculation are given in a
theorem of Bochner.* Let f'(k,, k5) be analytic and of
bounded L, norm in a tube T, f; < Im k; < «;. The
L, norm of fis defined by

-5 4+ %
I fle = (f‘ A f [ + &, 72 + i52)12d7/1 d772) »
(3.5)

A. LEONARD

where the integration is confined to the tube T.
According to Bochner, this function is uniquely
decomposable (up to additive constants) into a sum

of four functions, f=fi + f, +f5 + fi, each of
which is analytic and bounded in respective radial
tubular domains:

Sii{Imky > By, Imky > By},
for{lmk; < oy, Imk, > B},
far{lmk; < oy, Imky < 5},
Jo{lmky > By, Im ky < a}.

The f; may be given in terms of Cauchy integrals.
Letting [f],,+ denote the following integrals of f,

_1__ f(zy, ko) dz,

i _
2ai it oz — ky

_1_ f(kla 22) de

2ui gt oz, — k,

[fle== (3.6)

o+ = , 3.7

where the contours I'f are depicted in Fig. 2, we find
that the f; are given by

Ji= 1o eyt (3.8a)
Je= loost» (3.8b)
Js = ko> (3.8¢)
Jo = oo, (3.8d)

To obtain the product decomposition of A =
1 — ¢k, one must first take the logarithm and deter-
mine the additive decomposition of In (A). The desired
result is then obtained by exponentiation. For con-
venience, however, we shall reduce the decomposition
problem for A to one that has already been considered
by Kraut in his analysis of an elastic wave propagation
problem.”

A

F1G. 2. Integration paths in the tubular domain 7.
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We have the following integral representation of
A(k):

2 2 2 o ff
IVARESTEE BN ey Ty

# K41 7w (4 kD)
K =kI + k3, (3.9
where 0 is given by
8(e) = tan* (¢ma/24(a)),

Ao) =1 — cotanh™ o,

8(0y=0, (3.10)

(.11

This is a simple variation of a representation well
known in one-dimensional transport theory.® A more
convenient expression is given by

_ 2 [™ed/nedt f‘ tdt )
Alk) = exp ( w1 (F + KD 2 %y 24+ kY
(3.12)

Thus, to achieve the product decomposition of A, we
see by the above integral representation that we need
only additively decompose the function

Viky, ko3 1) = 1(/® + K2 + kD). (3.13)

Since ¢ is real and > #x,, V' is analytic in the tube

T, [Eq. (3.3b)]. It is an easy matter to verify that ¥

also has bounded L; norm in T, . By a simple modi-

fication of a calculation by Kraut,” we obtain the
following decomposition:

H(E® + ki + k) = Vilky, ko3 ) + Valky, ka3 1)

+ Vilky, ko3 1) + Vilky, ks 1), (3.14)
with

1
V k 3 kf); t = o
1( 1 2 ) lg + k? + kg
[1 ke (k2 + (KE + t2)%)
X |~ — = In
4 2xu(ky 4+ 17)* it
. JERTIEN
ke %ln(k1+(1+{))} (3.15)
2k} + 1% it
Va(ky, ko3 1) = Vi(—ky, ko 1), (3.16)
Vilky, ka3 0) = Vi(—ky, —kys 1), (3.17)
Vilky, ko3 1) = Vilky, —ky; 1), (3.18)

In the above, the principle branch of the logarithm
is to be taken, and we will arbitrarily choose the
branches of the radicals so that (k%) = +k,. Thus,
the H,, which were defined in the factorization of A(k)
[Eq. (3.2)], are given explicitly by

Hky, ky) = exp (-— 2 f 9(%) Vilk, , ky; D)t dt
13

kg

1
—2 f Vitk, , ko 1)t dr). (3.19)
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One can now verify without much difficulty that the
H,, as given above, are analytic in their respective
domains as per (3.3).

4. SUBTRACTION OF THE ASYMPTOTIC
SOLUTION

With the definition (3.1), Eq. (2.7) becomes

Alky, k)@, (ky, kp) = —Dy(ky, ky) — Dylky, ky)

— ®y(ky, ko) + 1/(a, — iky)(a, — iky), (4.1)

where, here and in the following, A(k,, k,) =
IN(GEN L) Using a Bochner decomposition on the
term AQD,;,* we can derive a set of integral equations
relating @, ®,, @3, and @,. The decomposition yields

Aq)z = [Aq)l]l + [A(D1]2 + [Ad)lla + [A(DJM (4-2)

where the operations [ ],, i =1,-- -, 4, are defined
by Egs. (3.6)-(3.8), with the corresponding contours
in Fig. 2 confined to the tube Ty . The uniqueness of
this decomposition allows us to equate terms on the
rhe of (4.2) to corresponding terms on the rhs of (4.1}
as foliows:

[AD,]; = 1/(ay — iki)(ay — iky),
[AD,], = —O,, Jj=2,3,4.

(4.3)
(4.4)

If in (4.3) [with Re{a;, a,) > 0] the integration
contours are taken to be the real axes and k, and &,
approach these contours (from above), we obtain a
singular integral equation for @,(k;, k;) on the real
axes:

Ay, ky)y(ky, ks)
1 T A(zy, ko)®y(z4, k) dz,

47i J-w Z, — kl‘
R f*‘” Alky, 29)P(ky , 25) dz,
47Ti —g 22 -~ k2

_ b f+wf+® Mzy, 2)Pi(21, 2,) dz, dz,
471’2 — - (Zl - kl)(22 - kg\,’
1

= , 4.5

(a; — ik)ay — iky) *3)
where the integrals are computed as principal values.
If one could solve the above equation for @,, then
®,, ®,, and &, would follow from (4.4).

In a study of diffraction of electromagnetic waves
from a quarter space, Kraut and Lehman?® encounter
similar mathematical problems. They derive an
equation analogous to (4.5) and prove that the solu-
tion may be obtained by iteration if a certain param-
eter is less than unity. If this parameteris close to I,
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the calculated convergence rate is siow. We could do
the same here for ¢ < 1. Instead, we will derive an
iterative scheme which takes advantage of the analytic-
ity of the various functions and which yields a
convergence rate which is relatively fast regardless of
the value of c. The transform of the asymptotic flux
distribution (away from the corner) is the zeroth-
order term in this scheme. Higher-order terms produce
a significant correction only very near the corner.

To begin the analysis of (4.1), we redefine the prob-
lem in terms of a new set of unknowns ®,, i =
1, -+, 4, which represent differences between the @,
and the transforms of the asymptotic distributions.
The asymptotic distributions are derived in Appendix
A by assuming, for example, that if x, is large and
positive, then, under certain conditions on (a4, a,),
the purely absorbing quarter space (x, < 0, x, > 0)
can be replaced by a medium which has the same
properties as quarter space (@) occupying the positive
quadrant. Theé result is a one-dimensional Wiener—
Hopf equation which is easily solved in both cases
(large x, , large x,).

Referring to (A7) and (A12), we see that ®,, given
by

@, (ky1, ko) = 1/[(ay — iky)(ay — iky)Hy(ky, ko)
X Hy(—iay, ky)Hy(—ia,, —iay)
X Hy(ky, —ia;)] + b, (ky, ky), (4.6)

will produce the desired asymptotic behavior for large
x; or x; with ®; analytic in the upper (k;, k,) planes
and yielding the correction near the corner. Similarly,
to get correct asymptotic behavior in the quarter
planes adjacent to the position quadrant, we choose to
define &, and @, as follows:

1 1
Dy(ky, k) = |
ok, ks) (ay — iky) (ap — iky)
X(L_ Hyky, ko) Hy(ky, —iaz) )+@wlm
Hy(—iay, k)Hy(—ia, , —iay)

4.7
1 1
(a, — iky)(az — ik,)
(1 _ H(ky, kp)Hs(—ia, , ks)
H(k,, —ias)Hy(—iay, —iay)

Dy (ky, ky) =

)+®mxa
(4.8)

Note that in (4.7) we have substituted the ratio
H,(k,, ko)/Hy(—iay , ky) in preference to the choice
indicated by (A13), namely, H,(k,, —ia,)/Hy(—ia,,
—ia,), and have made a similar substitution in (4.8).
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The reason for these changes as well as the definition
of @y,

1 1
Dy(k,, ky) = —
)= ) (@ - k)

x@_m“mjwﬁ“‘%§+@mwa
Hy(k,, ko)Hy(—~ia,, —ia,)

o (4.9)
is given below.

The problem, now defined in terms of hatted
variables, is
A(kh kz)(b1(k1 s k2) = "'d)2(k1a kz) - d)a(kla kz)

— Oyky, ky) + S(ky, ko), (4.10)
where (4.6)-(4.9) were used in (4.1) and the source
term § is given by
o 1
S(kl , kz) = . N " -

(a, — ik)ay — ikg)Hy(—ia,, —iay)
% (_ Hy(ky, ko)Hy(ky, ko)Ho(k; , ks)
Hy(—ia,, ko)H(k,, —ia,)
Hy(k,, k)Hy(k,, —iay)
Hy(—ia,, ky)
_ Hy(—iay, ko)Hy(k,, —ia,)
H3(k1 2 k2)
+ Hy(ky, k))Hy(—ia,, kz))_
H(k,, —iay)
Our motivation for making the choice of ®,, d,, and

®d,, as defined by (4.7)-(4.9), becomes clearer by
noting that the residues of $ vanish identically at

+

(4.11)

ky = —ia, and at k, = —ia,. Also, because
lim Hy(k,, k)
ki
=14+0(nkik), j=12,i=1,---,4,
(4.12)
we find that
lim S(k,, ky) = O(In k,/k2), j=1,2. (4.13)
kj— o0

This latter fact will be useful in our derivation of a
convergent iterative solution.

5. SOLUTION FOR &, IN TERMS OF ¢, AND &,

We now demonstrate that dssuming that &, and &,
are known leads directly to the solution for ®,. Later
we shall determine &, and ®,. For this purpose and
many of the remaining calculations we require the
following factorization of A in the variable k,:

Ak, ky) = ("3 + ki + kg)E(kz, k)E(—k,, ky),
(5.1)
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1/t dt .
f( [9 - ) / (1 + K — ik,. (5.2)
@ + KD + kD? — ik,)

E(kg, k,) = exp ( 1 fw

The above result follows most simply from (3.12).
The function E(k,, k,) is analytic in the upper k,
plane while E(—k;, k;) is analytic in the lower k,

plane.
With the substitution (5.1), Eq. (4.10) reads

kg)E(kz, kl)E(_k2 » k1)®1
= b, —d, — b, + 5. (53

(%2 + ki +

Before proceeding further, we need to derive some
useful relations between the ®, at infinity. Multiplying

(5.3) by &, and letting ky — 0, we find that
vi(ky) = —wy(ks) — valks) — v4lks), (5.4)

where

viky) = hm ik, ®(ky, k), j=1,2,3,4,
and where we have used (4.13) and the fact that
A — 1 when either k, or k, — 0. Because », and »,
are analytic in the upper half-plane, because »; and
v, are analytic in the lower half-plane, and because all
the »; vanish at infinity, we must have that

vi(ke) + valke) = 0,
va(ks) + v4(ks) = 0.

(5.5)

(5.6)
(5.7
Similarly, if we define the limits

ufky) = lim iky®,(ky, k), j=1,2,3,4,

kg~ 0

then we find

(5.8)

pa(ky) + py(ky) = 0,
palky) + ps(ky) = 0.

Now, dividing Eq. (5.3) by E(—k,, k;) and per-
forming the operation [ ], + [see Eqgs. (3.6)-(3.8)] on
the result yields

(”o + k2 + k3 2)E(ks, k1)¢' + paky)

= [E(E—';_z%—)];f’ (5.11)

where the operatxons [ 15+ correspond to the contours
fi as shown in Fig. 3 and where we have used the
facts that (1) the lhs of (5.11) is analytlc in the upper

k, plane and is square- integrable in T, [because of
(5 9)] and (2) the same is true of (&, + ®)/E(—k,, k)
except that it is analytic in the lower &, plane.

(5.9)
(5.10)

Now d1v1d1ng (5.11) by (4 + ki + k3)E(ky, ky)
gives, for
1
(%65 + ki + k)E(ks, ky)

Thus ®, is expressed in terms of known functions and
the unknown functions @, and g, .

A similar expression may be developed in terms of
®, and », by using the factorization of A in k;:

(I)1(k1 ’ kz) =

Ak, ky) = ("0 + k2 + k3 DE(k, , k))E(—k,, k).
(5.13)

We find, analogous to (5.12), that &, may be repre-
sented as

1
(5 + ki + KDE(—ky, ky)
5]
x [|—=2—"4
E(_kl ’ k2) ay
Of course, at this point both &, and &, are un-
known. The above expressions for ®; were simply
derived by a modified one-dimensional Wiener-Hopf
analysis, the modification consisting of factoring out
the zeros of A and using the Wiener-Hopf factor-
ization of the remainder. In the next section, however,
a coupled pair of Fredholm equations for &, and &,
will be derived which will be shown to be solvable by

iteration. Once this is done, we will return to (5.12) or
(5.14) to obtain D, .

(i)l(kl s k) =

- vz(kz)}. (5.14)

Im k,
1

ki plane

branch points

/ ' i

T

1

F1G. 3. The contours f‘ii.
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6. COUPLED FREDHOLM EQUATIONS
FOR &, AND &,

We return to (5.13) and divide by E(—4;, k,). This
time, however, we perform the operation [ ], - and
find

=[s_®4} Dty

— 7. (6.1)
E(—ky, k)lg-  E(—ky, k) !

Now we multiply the above equation by E(—k; , k3)
and perform the operatlon [ 1.,+ This filters out the
term @, which is analytic in the lower k, plane,

giving
Dy(ky, ko)
d,— 8

P(k““%b(kbmj +%_“”“J

(6.2)

Another equation relating ®, and &, may be

derived by dividing by E(—k,, k) in (5.3) and
performing the operation [ ],,_. We find

_[S-@

}__%+®4
E(_kZ s kl) G2

E(—k;, ky)

= 2 + yg.
6.3

Multiplying (6.3) by E(—k,,k,) and performing
[ Jo,+ gives the second desired equation:

(1)4(’{1 ’ kZ)

-k ),

(6.4)

The contours I'j (corresponding to the operations
[ l,,+) are as shown in Fig. 2 and, for the moment, are
confined to the tube 7,. This is sufficient to ensure
analyticity of S(z;, z) if (iay,ia;) e Ty N {Im (iay),
Im (iay) > 0}.

If (6.2) is evaluated for k, e I'f and k, eIy to
obtain ®,(k,, k,) and (6.4) is evaluated for k, e I']
and k,eT{ to obtain d,(k,, k,), then the two
equations represent a pair of coupled Fredholm
equations for ®, and ®,. The quantities 1/(z, — ;)
are clearly bounded. In contemplating a Neumann
series solution to (6.2) and (6.4), it would be advan-
tageous to make 1/(z; — k;) as small as possible by
lowering the I'7 contours as far as possible into the
lower half-planes. Guided by our experience in one-
dimensional problems, we might hope to achieve
deformation of the contours I'f to I’} shown in Fig.
3, which possibly would have the additional advantage

A. LEONARD

Imzl
{a) zz=iﬂ+6
(l<a 0, § = w)
z. plane
1
NN Re zl
2
-\/(zz) -1
Imz1
{b) z2=ia—6
I1sa S, 50 z, plane
( , )

AR
RAAAARNIN 4

+\/(zz)2-l !

FiG. 4. Possible choice of branch cuts of E(—z,, z,).

of producing a real-valued kernel. However, this
deformation is not possible for the following reason.
In (6.2), for example, if the integration variable z,
approaches the line (—ico, —i), then the branch point
of E(—z, z,) in the z, plane approaches the real Z;
axis at a point depending on the value of z, [refer to
the representation of E(—z,, z,) given by (5.2)]. This
is shown in Fig. 4. Thus it would not be possible to
deform I'f and I'{, as shown in Fig. 3, because the
contours I'7 and I'; could not be preserved.

An iterative scheme which avoids this difficulty and
leads to real-valued kernels will now be derived.
First, we note that because

)
E(—kl s kz) a1

__ % [__@4___} 6.5
T E(—ky, ky) Ha E(—k,, k) J5,+ ©3

it follows that (6.2) may be rewritten as

(i)z(kl ’ k2)

)
= | E(—ky, k)| ——2— + Ry(ky , ko),
[ ( )[E(-kl,kg)];,l; o k)
(6.6)
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and, similarly, (6.4) may be rewritten as

(i)d(k19 k2)
d
= | E(—=ky, k)| ——2— ] ] + Ry(ky, ks),
S e MR O
(6.7)
where
Rj(k11k2) = Tj(klakZ) + Uj(kl-, kz), j =2, 4,
(6.8)
and
Tk, , ks)
_ ( 1 )ZJ dz,E(—k,, 25) dz1g(z1a22)
2mi) It (zy— k) JETE(—zy, 20z — k)
’ (6.9)
Ty(ky, ks)
_( 1 )2 dz,E(—ks, ) dz,8(z, , 2,)
2mi/ It (2 —ky) T E(~2z,5,2))(z, — ke)’
(6.10)
1 dz,E(—k,, z5)vs(z
Ustha, k) = —— | LBk 2lz) - gy
2711 rz+ 22 -_— kz
1 dz,E(—k,, z z
Uy, k) = = E(—ky, z)uy( 1). (6.12)
2ai Jot Z, — kl

The contours in (6.6) and (6.7) may now be de-
formed into the lower half-planes. From a careful
inspection of the functions R,, R, E(~k,, k;), and
E(—~k, , k,), we find that ®, and &, have branch cuts
as shown in Fig. 5. Accordingly, it is useful to define
discontinuities of various functions as follows:

ki, z,€(—ioo, —i0):
(i)2+(21 s Z3) — (i)2—(zl » Z3)

= Wo(z1, 23),  Zp € (—i, —iny)

7 Y 6.13
X2(Z1,22), Zy5 € (—I(X)’ ._1) ( )
E(—k,, z5) _ E_ (—k,, z,)
E(—zy,25) E(—2z;2)
= G(ky, 21, 2,), zy6(—io0, —i), (6.14)

ky, 2y € (—ico, —i0):

(i):(zl > 22) - 6)2(21 s 22) = {1/"4(21 3 22),
X4(zl Py 22),

zy€(—1, —ixng)
z,€(—ioo, —i)
(6.15)

Ef(—ky, 2,) _ E™(—ks, 2y)
Ef(—zy,21) E(—z,,12)
= Glk,, 22, 21),

zy € (—ioo, —i), (6.16)
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Im k2
A
Analyticity of 4’2 )
k ane
k) € (-i®,-i0) 2 P
Re kZ
¢ -in
hS 0
AN
q
{ -
+ b -
\ h‘/
3
Im kl
[d
Analyticity of L
k. plane
K, € (-i®,-i0) 1P
2
Re k1
‘\ -ino
y
-i
g
+ 3 -
3

FiG. 5. Branch cuts of d)z and &,

where the superscript (+) denotes a limit in the k,
plane and the subscript (+) denotes a limit in the
k, plane (see Fig. 5).

Collapsing the T'} about the negative imaginary
axes,!® we can rewrite (6.6) and (6.7) as

. 1 2J’_" dz,
Dok, , ky) = [— ¢
Z( ! 2) (2771) —io Zg — k2

X (J‘W dz,G(ky, 2y, Z)xa(2y 5 25)

—im Zy — kl
+ “‘ ] dZIG('kl s 21, 22)%(21’ 22)) + RZ(kl . k2)9
v—i z, — ky

(6.17)
. 1 2 r—i d
Dyky, ky) = (;T_I)J‘ o 2 Zlk
—100 1 -_ 1
N ( T dz,Glky, 24, 212, 22)
22 - kg
+J‘”“’° dz,Glk,, z,, 2))pu(2,, 25)

-t zy — ky

—~10

) + Ry(ky, k).

(6.18)

In Appendix B, integral representations for 7, and
T, , the known parts of R, and R, , are derived by using
formulas analogous to (6.5) in (6.9) and (6.10) with
contour integration.
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Thus we need only determine ws, X2, ¥2, i Ya»
and 4 1o obtain ®, and &, from (6.17) and (6.18),
respectively. The discontinuities of ®, and ®, as
calculated by just these equations provide four of the
equations for the above functions. Computing the
discontinuity of (6.17) across the cut (—i, —ixg) in
the k, plane, we find that y,(k,, k;) is simply given as
the discontinuity of R,:

palky , ky) = R2+(k1, ki) — Ry (ky, k),

ki€ (—ico, —i0), ky€ (—i, —ixg). (6.19)

Similarly, from (6.18) we compute y,(k;, k;) to be
given by

Ya(ky, ko) = R?I(kl y ka) — Ri(ky, ky),

kye(~—i, —ixny), ky€(—ico, —i0).  (6.20)

Next, computing the discontinuities of (6.17) and
(6.18) across (—ico, —i) in the k; and k, planes,
respectively, yields two coupled Fredholm equations
for y, and y,:

1 —i d G k , , k , k
tolky, k) = = 2,0(ky, 21, k)pa(z1, ko)

rl J—i®

z, — k,
+ [R2+(k1 ’ k2) - R2——(k15 k2)]’

1 —id Gk’ ,k k,
X4(kl’k2)=:2__ 2,G(ks, 22, Ky)xa(ks 5 25)

i J—iw

(6.21)

22 - k2
+ [R{(ky, ko) — Ry(k; , ko)) (6.22)
The kernels are real and are continuous because
G(k;, z;, k;) is analytic in k; and vanishes at k; = z,.
We define the linear operators L, and L,,
3 zl ’ k2)y(zl s k2)
zy =k

’

1 (tdz,G(k

Lo(y)ky, ky) = — f = y
2mi J—iw

(6.23)

1 (7 dz,Glks, 25, k)y(ks,
Lk, b = o= | et AL 2

Tl v—iw

2

(6.24)

Zy — ks

and write an iterative scheme for solving (6.21) and
(6.22) as follows:

17 = Liu™) + [Ree = Rp ], (6.25)
2" = L") + R} — Ry,
W0=0 n=1,2---. (6.26)

To justify this procedure, we must demonstrate that
the norm of L,L, satisfies ||L,L,|| < 1 in some Banach
space. In Appendix C, we show indeed that this is true
forall0 < ¢ 2 2 and that the convergence is uniform.

A. LEONARD

As a final step, we relate the unknown functions »,
and y, to the functions y,, x, and y,, x, as follows. As
in the development of (6.2), but using the factorization
A = (HyH,))(H,H,), we find that

Dy(ky , ka)

b, S
= | H,H + | HH .
l: * 3[H2H3];1+:];z+ [ : a[HZHJ:lzl_:]UB+

6.27)
Multiplying (6.27) by ik, and letting k, — o, we have

i —ixg ng
vo(ky) = — —_—
olka) 4n® Joiw z, — ky

N J'—iuo dzl[(i)t(zl , 22) - (i);(zl » 22)]
Ha(zl ] 22)

—~ta0
( 1 1
x —
Hp(z1,25) Hy(z,2y)

where & — & is related to y, and y, by (6.15).
Similarly, we find that u,(k,) is given by

), (6.28)

i [ dz
k) = — it S
ta(ky) At e 7 — K,

y J~—ino ng[(i)g.,.(zl , Z3) — (i)g__(Zl s Z)]
Hy(z,, z5)

—i00

X ( L - 1 ), (6.29)
H{(z,,25) Hil(z, z5)
where &, . — ®,_is related to 1, and g, by (6.13).
Equations (6.19)-(6.22) and (6.28) and (6.29)
comprise the required set of six equations for the six
unknowns ¥, Ya, ¥s, Y4, X4, and uy.

7. CONCLUSION

Assuming an inhomogeneous term exp (—a;x; —
a,X,) in the transport equation (2.2), we find that the
double Fourier transform of the flux in the quarter
space, ®,(k, , k,), is given by (4.6) in terms of the
transform of the flux away from the corner whose
properties are discussed in Appendix A, and a correc-
tion ®,(k, , k,). The function ®,(k,, k,) is given in
terms of ®,(k, , ks) or Dy(k, , k,) by (5.12) or (5.14),
respectively. The functions ®, and ®, have singulari-
ties only on the imaginary axes and are given by (6.17)
and (6.18) in terms of functions y,(z; , 2,), x:(z; , 22),
i = 2,4, vy(ky), and u,(k,). The y, are given by (6.19)
and (6.21), while the g, satisfy Fredholm equations
(6.21) and (6.22). Uniform convergence to the solution
of these equations may be obtained by iteration for
values of ¢c: 0 < ¢ Z 2. The functions v, and y, are
related to the y, and g, by (6.28) and (6.29).
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A more direct approach to the solution appears to
be possible by obtaining Fredholm equations for @,
and ®, (instead of , and d,) starting from (4.1) and
bypassing the subtraction of the asymptotic terms,
There are two objections to this approach. First, the
asymptotic behavior of the flux does not appear in a
natural, relatively simple way. Second, the properties
of the resultant Fredholm equations for ®, and @,
appear to be very sensitive to the value of %, (and
hence the value of ¢) and to the location of the points
ia, and ia; . Convergence is an open question. In
particular, residues at the poles k; = —ia; and k, =
—ia, are unknown and must be carried along during
the iteration.

APPENDIX A: ASYMPTOTIC SOLUTIONS

Far away from the boundary x; = 0, the spatial
distribution of the density ¢(x;, x;) in x; will tend to
the source distribution exp (—a;x) if Re (a;) and
Re (a,) are small enough. Later in this appendix we
give specific upper bounds which must be satisfied.
Thus,

(AD

To determine the distribution in x, for large x, given
by a«,, we substitute the rhs above into the transport
equation (2.4) and extend the integration on x, to
(=00, +o0):

@(xy, Xa) — exp (—ayx)as(Xg), X — + 0.

exp (—ayxay(xy)
= of “axt [ "axik(x = x exp (st
exp (—ax; — ay%,), X%, >0
+
{O, X, < 0° (A2)

Equation (A2) represents a one-dimensional Wiener—
Hopf problem in x,. Fourier transformation in x, of
the above equation yields

Al — a1t (k) = —Az(ks) + 1(a, — iky),
(A3)
where A is defined in (3.1) and A4F is the transform of
oy for x, 2 0:

A k) = f “exp (thprag(ry) dxs,  (Ad)

0
Ax(ky) = f_ exp (hyxag(vs) dxy.  (AS)

The appropriate factorization of A[(k} — a?)}] is given
by
AL — a)?] = [Hy(—iay, k)Ho(—iay, k)]

X [Hy(—iay, k)H(—ia,, k;)), (A6)
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where the first factor in square brackets above is
analytic and nonzero in the upper k, plane while the
same is true for the second factor in the lower k,
plane.
Using the factorization (A6), we easily solve (A3)

to give
A3(ky) = [(a, — ik))H (—iay, ko)Hy(—iay, k)

X Hy(—iay, —ia)H(—ia,, —ia)]™ (A7)
and

1
ag — lkz

x (1 _ Hy(—iay, ky)H(—iay, ks)
Hy(—ia,, —ia)H(—ia,, —ia,)
To interpret the above results without going into
any great detail, we see from (5.13) and (5.2) that

Az(ky) =

). (A8)

2 _ ok
Hy(—iay, k)Hy(—iay, k;) = (Q’i&__“_l)%__l&)
(1 —ad)? — ik,
6(1/t)t dt

< exp - iflw(t? ~ D — a)f - ikzl)' *

Thus H,H, for k; = —ia, has a zero at k, =
—i(xg — a})t and a branch point at k, = —i(1 — a?)}
with a corresponding branch cut in the lower half-
plane. (The apparent pole at the branch point is
canceled by the exponential term which goes to zero
at that point.) Fourier inversion of 43 will give by
contour integration two discrete exponential terms
for ay(x,), x; > 0, plus an integral over the branch
cut as follows:

llm (p(xl b x2)

Ea o]
1
= exp (—a;x,) — f
27

~+o0

exp (—ikyxy) Az (ky) dk,
o0

= €Xp ("'alxx)(Rl exp (—apx,;)
+ Ryexp [— (o — adix,]

+ ﬁ i 43P (—kx) D(1) dk), (A10)

where residues R; and R, and the function D(k)
associated with the discontinuity across the branch
cut are easily obtained by using (A7) in (A9). For
X3 < 0, ay(x;) will consist only of an integral term
over the branch cut of Hy(—ia,, k))H,(—ia,, k,) in
the upper half k, plane. We have thus determined the
behavior of ¢(x, , x,) for large positive x, for all x,.
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Similarly, we expect for large positive x, that
@(X1, X5) — €xp (—apxr)on(xy), Xp— +co. (All)

If Fourier transforms of o, are defined as follows:

Af(hky) = f exp (tkux)o(xy) iy
{1}
A;(kl) =f €xp (ikzxﬂoh(xx) dx,,

then an analysis similar to that above for «, gives

A (k) = [(ay — ik)Hy(ky, —ian)H(ky, —iay)
X Hy(—ia,, —ia)Hy(—ia,, —ia)]}, (A12)
and
1

al - ikl
x (1 _ Hy(ky, —ias)Hy(k,, —iay)

Hy(—iay, —ian)Hy(—ia;, —ia,)
The large x, behavior of ¢(x;, x,) for x; > 0 will have
the same form as given in (A10), with a;, a,, x;, and
x, replaced by a,, a5, x,, and x;, respectively.

An earlier statement was made that Re (a,) and
Re (a,) must be small enough if (Al) and (All) are to
be valid expansions. From (A10) and the equivalent
expression for large x, we see that Re (a;) and Re (a,)
must satisfy

Re (a;) < Re (x§ — ag)%

AT(ky) —

)‘ (A13)

and
Re (a,) < Re (4 — ),

or, if a; and a, are real,
2 2 2
ay + a; < ¥p.

APPENDIX B: THE FUNCTIONS Ty(k,, k;)
AND Tk, , k)

The function T, is given by (6.9) or, equivalently, by

S’(kl,kz)] ]
E(—ky, k) Jz ~do,+

(B1)

where S is given by (4.11). For the first two terms
within the brackets in (4.11), we apply the operations
shown on the rhs of (B1}, and for the second pair of
terms we use, for any suitably behaved B(k,, k,),

[B(kl,kz)} _ Bl k) [ B(k, , ky) ]
E(—ky, k)1, - E(=ky, k)  LE(—ky, k) o+
(B2)

Tyky, ky) == [E(-—kl, kz)[
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After subsequent manipulations we find
Hylk,, —iay)
(a; — ik, Xay — iky)
Hyk,, —iay) )
H2(— ial [ ia2)

H3(°—ia1 ’ _iaZ)Y:‘Z(kl [ k2) =

% ( H2(k15 kZ) -
Hy(—iay, k,)
1
2wi{a, ~ ikpH(—ia,, —iay)
T dzyGlky, —iay, zo)H(—ia,, z,)
(22 — ky)(ay — izy)
1 dz,
27l J-iw (25 — ko)(ay — izy)
x ( E (ki zy) _ E_(—k;, zo) )
Hy (—ia;, z,)  H,{(—ia,, zy)

—i00

1

1 f—i dz,Hy(—liay, z,)
4 i (25 — ko) — izy)
% Jumo dz,G(ky, z,, 2,)
—iw (2y — kla, — izy)
x ( H{(zy, 2,) Hi(z,, z,) ) (B3)
Hi(z,, —iay) Hi(z,, —igy);
Similarly, we find that T,(k,, k) is given by
Hy(—ia,, ky)
(ay — ikyNa, — iky)
Hy(—iay, ky) )
H(—iay, —ia,)

Hy(—iay, —ia)Ty(k,, k) =

« (Llhk)
Hy(ky, —ia,)
-1 1
27mi{ay — ik )H(—ia,, —ia,)

% fﬁi dz\Glky, —ias, z))Hy(z;, —iay)
(zy — ky)a, — izy)
dz,
k)a, — izy)
x (E“*(--ka,zl) - Bk )
H{(z,, —iay) Hy(zy, —iay);
b ("'i dz Hy(z,, —ia,)
4r* liw (2, — k)a, — izy)
f““" dz,Glksy, 25, 24)
—im (Zg — ko)(az — iz,)

g o0
1 ~i®p

271 J—iwo (27 —

% ( H2+(z.1 3 22) _ H2~(2.1 3 22) ) . (B4)
Hy (—ia;, z5) H, {—iay, Zy)/
APPENDIX C: CONVERGENCE OF THE
ITERATION SCHEME

In this appendix we will show that the Fredholm
equations derived in Sec. 6 may be solved by iteration
and that the convergence is uniform. The integral
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operator in question is L,L, given by (6.23) and (6.24).
Since the Fredholm kernels belonging to L, and L,
will be seen to be positive, we can define the norm of
LyLyfl = max

the operator L,L, as
B —
|%fﬁ i
ky kael—io0,—i) 4z —i
[ gl 2y )Gl 3,2

~iw (2, — kN za ~ k2)B(zy, 2)

where B(k; , k,) is a positive, bounded function to be
chosen later. The corresponding norm on the function
space is

1Al =

, (CD

max
k1, kae(—i00,—1)

|B(ky, ko)f (kys k)l (C2)

To prove uniform convergence, we must show that
I LyLsll < 1. For convenience we switch to positive
real variables

iZj~>C,-, ]= 1,2

and consider the quantity —(1/27)G(k,, 25, z1)/
(zo — ky). Using (6.16) and (5.2), we find that

_1_ G(ks, z,, 21) — 1 G(=iny, —ily, —ily)

ik, —n;,

2m Zg — kg 2 Cg — N2
— DyD; D, sin (yg — 1) (C3)
™ Ny — Ly
where
2 2 _ \¢
= (G ©
G+mn—1
1 (&
D, = exp [-— = f 6(1/0)t dt
T J1
: )
(Cf+n§-t2 G+8-17

_ _ 1 =61/t dt
D, = exp [ L (__——_t2 _ ﬁ)%

m

1 1
- , (Cé6
8 (n2+<t2—cf)* §2+<t2—z%)*)] ()
- (1, — LI — 1)}
o = R C7
o= ((c3+z§—1>*(c%+né—1)%) ©
1 e(l/t)tdt( L m )
rh @-g+-—e 24ni-a/
(C8)

The quantities y,, ¥;, and 7, — {, always have the
same sign. Furthermore,

l'Po‘ S 77/2,
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and, using 6(1/t) < =, we obtain

Il <

fﬁ tdr( L )
@ -\g - -2

- ((i;% - 1)*) — ((ci - 1)*)‘

= |yl (€9
Thus the left-hand side of (C3) is positive, real, and
bounded by

___1_6(_""72,'—1'52, —iC1)< DyD,D, sin 6,

2mi G = 72 B T M — G
D,D,D,
= s C10
- (C10)
where
@ -t
g = o . (C11)
&g+ Ny — 1

We now choose
B(Zl ) Zp) = B(_iCl » "‘iC2)
1 (% 6(1/0e dt

=(§f+cz—1)exp[; N i

+ 717 f’ Zgl/:)tzg;(gz + (ti — C?)*) }

(C12)
consistent with the behavior of y, and y, at infinity.
Substituting (C12) and (C10) into (Cl) and using
carefully selected inequalities which are too numerous

to repeat here, we find that the norm of L,L, is
bounded by

| exp (K) [* (3 — DE g,
L,L,| =
fLoLall m,:?e?fw) 2 b Bl
@ - pta,
x f R st €y
where
K — max _f“’ 61/t dt
rea | (12— DL+ (2 = DY
_ (1 fw O(1/0)t dt
(= DA+ @ - D)
1 [t ey dt
WJ;ﬂ.z'l-l—tz) ' (C14)

Finally, we obtain the following interesting result
for 0 < ¢ 2 2. In this case one can show that the
term in braces above is positive, so that

Kslf Z(l/t)tdt ' =m< 1 )

71 (= DE[1 + (¢ — )] E(i, i)
(C15)
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where E(k,, k;) is defined in (5.2). Thus,
ILsLy)l < 1/4EG, §). (C16)

The result (C16) should be compared with analogous
results in one-dimensional slab geometry.*!

Using the inequality 6(1/t)t < =, valid also for
0 < ¢ = 2, we find further that

1 174/2

ILoLall < —(\/2_+_1) ~087.  (CI7)
4\ /2 -1

Due to the numerous inequalities employed to

achieve this result, we suspect that the actual norm of

L, L, is significantly lower than the above upper bound.

A. LEONARD

* Part of this research was supported by a National Science
Foundation Grant.
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A new cell model for classical particle systems is presented and analyzed. In this model the particles are
confined to congruent, interconnected, cubic cells of volume w centered on the points of a cubic lattice
with lattice spacing 1/y. The particles interact via a 2-body potential of the form ¢(r) + w~'K(yr). The
paper deals with the limiting form of this model in which the cells are very large but their separation is
much larger. The free energy density is defined by

alp, T)= lim lim a(p, T, y, w),

o-—>wn y-—>0

where a(p, T, ¥, w) is the free energy density at density p, temperature 7', and arbitrary y and w. For a
very general class of functions ¢ and X, it is proved that a(p, T) is given by a variational principle. For a
certain class of functions X (including X < 0), a(p, T) is given by the Lebowitz-Penrose generalization of
the van der Waals—Maxwell theory. For a different class of functions X the system has crystalline states.
When X is chosen so that only particles in nearest-neighbor cells interact and X is isotropic, it is proved
that the most general crystalline state of the system has a density distribution with two values p, and p_
arranged in a checkerboard (sodium chloride) pattern. For the special case with K repulsive, X(0) = 0
and ¢ = 0, the system has a second-order melting transition from a crystalline to a fluid state, with no
critical temperature. Various correlation functions are defined and evaluated. In the 1-dimensional
nearest-neighbor case, the results include exact versions of the Ornstein-Zernike theory for both fluid
and crystalline states. Magnetic systems are also considered. Different special cases of the model yield
precisely the Weiss theory of ferromagnetism and the Néel-van Vleck theory of antiferromagnetism.

MAY

1. INTRODUCTION

This paper deals with a new cell model for many-
body systems. The model is of a general type in that it
applies to particle systems and magnetic spin systems,
and allows a wide choice of interaction potentials.
It is not a realistic model for these systems, but,
nevertheless, it exhibits many of their properties and
has the advantage of being very amenable to exact
treatment. In particular, it has crystalline (or anti-
ferromagnetically ordered) states and a melting
transition which can be studied in detail.

The explanation of the crystalline state and the
phenomenon of melting from the principles of statis-
tical mechanics is an outstanding unsolved problem
of theoretical physics. Several simplified models have
been studied, but even these are not very well under-
stood. The early theories are of the mean-field type,
due mainly to Kirkwood and Monroe.* The Lennard-
Jones and Devonshire theory,? and the model of this
paper, are related to these. Recent work® has shown
that these theories are derivable from the statistical
mechanics of a model system. It has been shown* that
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this system does crystallize in a certain sense, but the
form of the crystal structure and the nature of the
melting transition (in particular, its order) are not
known. Different approximate treatments give con-
flicting results.!-®

Another model is the gas of hard spheres or hard
disks for which the computer experiments of Adler
and Wainwright® suggest the existence of a crystal
state and a melting transition of the first order. How-
ever, there is no theoretical proof of this result. A
similar model is the hard-square lattice gas,” for which
some accurate expansion techniques have been found
by Gaunt and Fisher. These expansions indicate the
existence of a second-order melting transition, but
again this has not been proved.

The need for models which, like the model of this
paper, can be treated exactly is therefore apparent.
The model may be useful as a “testing ground” for
general formal theories of melting, such as the theory
of “group invariance of states’” and “broken symme-
tries,”” which has been formulated recently.®

2. THE CELL MODEL

In this section we define and discuss the details of
the cell model. In this model the particles are confined
to congruent, similarly oriented, »-dimensional cubes
{w(y[y)}, called cells, of equal volume w, where w(x)
is centered at a point x. The vector y can lie only on the
points of a »-dimensional cubic lattice Z* with unit
cell of side unity (Z" is the space of all »-tuples of
integers). Hence the cells {w(y/y)} are centered at
points of a cubic lattice with unit cell of side 1/y (see
Fig. 1). The particles can move freely from one cell to
another. To make this physically possible, one can
imagine very fine tubes of negligible volume connect-
ing the cells. Each particle interacts with other particles,
both in the same cell and in other cells, via the 2-body
potential

o(r, ¥, ®) = q(r) + o K(yr), (2.1)

where ¢(r) is called the short-range or reference poten-
tial and w=1K(yr) is called the long-range potential.

We shall consider the free energy density d(p, T,
¥, w) (defined below) of a system of such particles
with average density p and temperature T, and evalu-
ate its limit

a(p, T) = lim lim d(p, T, y, w).

w0 Y0

(2.2)

This limiting free energy density a(p, T) describes a
system in which the distance 1/y between the cells and
the volume w of each cell are both very large. Since the
limit y — O is taken first, the separation of the cells

small
connecting
tubes

—L—‘w I__—L‘al)___r‘
is much larger than their dimensions, i.e.,

Y1 o, (2.3)

The range of the potential w—'K(yr) also becomes
infinite as y — 0, so that “as seen by the cells’” this
potential has a fixed range. For example, the inter-
action potential of two particles at the centers y,/y
and y,fy of w(y,/y) and w(yyfy) is & K(y, — o),
which is independent of y. The need for the factor
1/w in the potential can be understood by considering
the contribution from w'K(yr) to the potential
energy of a single particle interacting with every other
particle, for a state of uniform density p. An estimate
of this contribution is

u(y, w) = Pf dr ™' K(yr),
oUZY)

where (X(Z’) is the union of all the w(y/y)s, i.e.,

Fic. 1. Illustration

of the cell model. iy

(2.4)

2z = U o(yly). 2.5)
This gives ™
u=py lf dr K(yr)
yeZ¥ @ Joly/y)
=3 1| arkw, (2.6)

yeZ' @ JB(y)

where @(y) is a cube of volume @ = y’w, centered at
y. Assuming K is continuous, we obtain

L f drK@)—>K(y) as y—0, (27)
w Jaoly)
and hence
lim lim u(y, 0) = lim u(y, ©)
W=+ Y0 y=-0
= p 2 K@), (2.8)
yeZ?

which is finite if the sum converges [see condition
(2.16)]. Without the factor I/w in the long-range
potential, this limit would be infinite, and the system
would behave catastrophically in the limit w — oo.
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The present model is very similar to the model
considered by Lebowitz and Penrose and others.%4-°
They used a long-range potential of the form y*K(yr),
without confining particles to cells. The factor y” is
needed for the same reason as the factor 1/w is needed
in the present model. The behavior of the two models
is also very similar, as is shown in Sec. 3.

We define the free energy density @(p, T, ¥, w) in the
usual way as follows. Let D be a set of points of Z*
forming a cube, and let Q(D) be the set comprising
all the w(y/y)’s for which y € D, i.e.,

D<=z, QD)= Uw(i’) < Z). (29)

yYeD
Thus Q(D), which depends on ¥ and w, has total
volume

1Q(D)| = w | DI, (2.10)

where |D| is the number of points in D. Then we
define

ap, T, y, w)

= —kT lim
N.|D|~w |Q(D)|

N/|D|-wp

log Z(N, D, T, y, w), (2.11)

where

Z(N,D, T, v, w)
1

—Uy
17) S dx, ex ( ), 2.12
NIAY fmp) ! oy Y P kT (2.12)

which is the partition function for N particles in
Q(D). Also, A is the thermal wavelength and

Uy= 2

1<a<p=N
Note that, in (2.11), the average density of the particles
N/|(D)] tends to p, while w and y remain constant.
The definition (2.12) expresses the fact that particles
can move from cell to cell.

To complete the definition of the model, we must
specify conditions on the functions ¢(r) and K(r)
which ensure the existence of the limits (2.2)and (2.11).
We shall assume always that

(X, — X, y,w) for N >2. (2.13)

(2.14)

g(¥) = g(—r) and K(r) = K(—r),
K(r) is continuous and bounded, (2.15)
K@ < Cr|™7, (2.16)

where C and ¢ are positive constants. Further con-
ditions are needed, and these may be of two types:

Type-I systems: q satisfies'® the stability and tem-
pering conditions of Fisher'* [Egs. (3.9a)-(3.9¢) and
(3.11a)]. No further conditions on X. (2.17)

D. J. GATES

Type-II systems: q > 0 and g satisfies the tempering
condition (3.11a) of Fisher.!* K(r) is also a “positive-
plus-positive’” potential in the sense of Fisher [Eqgs.
(3.6a) and (3.6b)]. (2.18)

For Type-I systems, it follows from (2.15), (2.16),
and (2.17) that o(r, y, w) satisfies the stability and
tempering conditions (3.9a)-(3.9c) and (3.11a) of
Fisher, which imply the existence of 4. For Type-II
systems, it follows from (2.15), (2.16), and (2.18) that
v(r, y, w) is a positive-plus-positive potential and
satisfies the tempering condition (3.11a) of Fisher,
which again implies the existence of 4.

For Type-II systems, v need not have a core. For
example, a possible choice is ¢ = 0, which we con-
sider further in Sec. 5.

3. YARIATIONAL PRINCIPLE AND VAN DER
WAALS-MAXWELL THEORY

In this section we present the basic results for the
cell model, and give an outline of their derivation.
First, we need some definitions. Let C(p) be the set of
all functions n = {n(y):y € Z*}, whose values n(y)
are (a) nonnegative, (b) periodic with respect to y
(with unspecified period), and (c) have average value
p, L€,

n(y) = p,

)F(n)l ye;(:n) (Y) P

where I'(n) = Z" is the unit cell of n and [I'| is the

number of points in I'. Let G(n, T) be defined for any
n € C(p) by

(3.1

)

[I'(n)) yertn)

+4n) 3 Ky =), (32

6(n, T) = (a"[n(y), 7]

where a%(p, T) is the free energy density of a con-
tinuum system, called the reference system, with the
2-body potential ¢(r), i.e.,

(. T) = —kT lim —=1log ZXN, V, T), (3.3)

NV|=o [V
N/V|=p
where
ZN,V,T) = L fdx ~-~fdx exp (:—Q—)
T TNIAY y o N kT )’
(3.4)
Onv= 2 a(x.—x), (3.5)
1<a<d<N

and V is a cube (in the v-dimensional real number
space) of volume |V1].
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The basic result about the cell model is given by the
following variational principle.

Theorem 1: For systems both of Type I and of
Type II, the free energy density a(p, T), defined by
(2.2), exists, is convex in p, and is given by

a(p, Ty = inf G(n, T).

neC(p)

(3.6)

The result (3.6) simply states that, to find a(p, T),
one minimizes the free energy functional G(n, T) over
all possible local density functions n(y). This is similar
to the well-known thermodynamic principle of *mini-
mizing the free energy.”” One must use an infimum in
(3.6) rather than a minimum, because one may need
to make I'(n) arbitrarily large to minimize G, which
would mean that the minimum could not be attained
for any n € C(p). (This happens for 2-phase states.)

Theorem 1 should be compared with a correspond-
ing result of Ref. 3, Part I (Theorem 2). The latter
result is the same except that n(y) is replaced by an
integrable function, and the sums in the definition of
G are replaced by integrals. The proofs of the two
results are also very similar, and so we shall only give
an outline of the proof of Theorem 1 here, and refer
the reader to Ref. 3 for details.

Outline of Proof (with T omitted from the notation):
From (2.9) and (2.12), we can write

Z(N, D, y, w)

|
—{N(y))%(N,D) (g) N(Y)! A& L(y/w\""’)
X dx, - dxyexp(—=Uy/kT), (3.7)
where 8(N, D) is the set of functions {N(y)} such that
ye D and

> N(y) =N,
yeD

(3.8)

where the N(y)’s are nonnegative integers. The nota-
tion in (3.7) indicates that there are N(y) volume
integrations over each w(y/y). Since w1K(yr) varies
slowly with r for small y, the contribution from this
potential, to the interaction between a particle in
o(y[y) and a particle in w(y'[y), is approximately
o™ K(y —y'). Also, the contribution from ¢(r) is
almost zero because the cell separation becomes in-
finite as ¥ — 0. Hence we can write

Un=3 Uy + 1 2 NN )oKy — ),
yeD y.vy'eD
(3.9)

where Uy, is the potential energy due to g(r) for a
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system of N(y) particles in w(y/y). This gives

Z(N, D, y, w)
~ 3 @I?wwxm)
{N{¥)}eS(N.D) \veD

1 N
X exp (— T y.yZEDN(y)N(y K(y — ¥ )).

(3.10)

The log of this sum can be approximated by the log
of the maximum term. Setting

n(y) = N@y)/w

in the resulting expression gives

(3.11)

kT
1Q(D)]

log Z(N, D, y, w)

. 1 1
= min _— — — kT 10 ZO wn ,
{ontyeSWV. D) | D] ( YZED ® g Z’[wn(y), w]

+ 1 Y n(yn(y)K({y — )")) + corrections.
D

y.y'e
(3.12)
If w is large, one can replace

— kT log Z°[wn(y), o]

by its limit @°[n(y)], as @ — oo, plus a small correction.
Also, if w is arbitrarily large, the numbers #(y) can be
arbitrarily close to any real number, consistent with
(3.8); i.e., any function in the set C,,(N/|C2(D)|), where

CD(p)E{n:n(y)2OforyeED,andl—ll-)-l > n(y) = p,

yebh
(3.13)

can be approximated arbitrarily closely by an n(y) of
the form (3.11).

To find a(p), we must first let |D|— oo with
NNQ(D)| — p in (3.12), which by (2.11) gives d(p,
¥, @), then we must let y — 0 and finally & — <. By
the method of Ref. 3, the corrections can be shown to
vanish in the above triple limit. Hence we have

a{p) = lim min 1
iD[~ w neCp(p) 'Dl

x (3 a1 + 13

yep

nOHYIKEY - ¥)-
y.y'eD

(3.19
This is itself a variational principle for a(p, T). One
can show that it is equivalent to (3.6), by using the

method of Sec. 3 in Ref. 3. The convexity of a(p, T)
follows?® from the convexity of d(p, T, y, w).
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A basic property of the model is that, like the model
considered in Refs. 3, 4, and 9, it yields a generaliza-
tion of the van der Waals—Maxwell theory of the gas-
liquid transition for a certain class of functions K.
More precisely, if we put

R(p) = ZvK(s) exp (2wip + s) (3.15)

and seZ
e =3 K(s) = K(0), (3.16)

seZ”

we then have the following.

Theorem 2: (a) If the function K is such that K > 0,
then

a(p, T) = G(p, T) = a*(p, T) + ap®. (3.17)

(b) If R(p) > K(0) for all p (of which a special case is
K < 0), then

a(p, T) = CE[d’(p, T) + }ap?],

where CEf(p), called the convex envelope of f, is
defined for any f as the maximal convex function not

exceeding f(p).

(3.18)

This theorem, which is due essentially to Lebowitz
and Penrose,® can be deduced from Theorem 1 by
adapting the method of Ref. 4 (Sec. 5). The pressure
corresponding to (3.18) is given by the Maxwell con-
struction applied to a generalized van der Waals
equation. Note that for Type-II systems « > 0, so
that (b) does not apply.

The other results of Refs. 3 and 4 can also be easily
adapted. In particular, one can show that for some
functions K the Eqgs. (3.17) and (3.18) do not apply.
Instead, the functional G(n, T) is minimized by a
nonuniform, periodic function n(y), so that the system
has a crystalline phase. It is this phenomenon which is
investigated in more detail in the following sections.

4, THE CASE OF NEAREST-NEIGHBOR
INTERACTIONS
To study the above-mentioned phenomenon of

crystallization, we consider some special cases of the
model. The simplest case is obtained by choosing

K@) = a, K(s)=0 forall seZ’.

4.1

This gives K(p) = K(0), so that (3.17) and (3.18) apply
for all «.
More interesting is the special case with

KE) =0 for (s{>1, se€Z’,

s#0,

4.2
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which implies that only particles in nearest-neighbor
cells interact via the long-range potential. Let us put

K, = K(0), (4.3)
and let the system be isotropic so that
K(s) = K, for |s|=1. “4
One easily shows that
K>0 ifandonlyif K,> 2v|Ky, (4.5
so that a(p, T) is given by (3.17), where
a = K, + 2vK;. (4.6)
One can also show that
K@) > K(0) ifand onlyif K, <0, (4.7

so that a(p, T) is given by (3.18). These results are
indicated in Fig. 2 by the regions (1) and (2). We
shall find that systems in the remaining region (3) have
a crystalline phase.

We now derive an equation of state which holds for
all Ky and K, including the region (3). First, we
define the function MEY, called the midpoint envelope
of £, by

MEf(p) = irhlf e+ 1) +flp—h] (48)

for any function f(p). We shall prove the following.

Theorem 3: For the nearest-neighbor cell model,
defined above,

alp, T) = CE{ME[@(p, T) + (K, — $o)p*]
+ (2 — Kp?).  (49)

For values of p and T, where the bracket { } coincides
with its convex envelope, one can also write

a(p, T) = G(n*, T). (4.10)
Here n*(y, p, T) minimizes G(n, T) for n € C(p), and

Ky
I
(3) crystalline and 1

fluid phases
y
(2) two or more

fluid phases

Z‘VKx = Ko

(1) single fluid phase
r K,

2y K,=-~K,

Fi1G. 2. The properties of the nearest-neighbor cell model as deter-
mined by the interaction constants K, and X .
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has the form?2

n*(y, [ T) = P+(P’ T) fOI‘ z Ve ?Vena
= p_(p, T) for Y y,odd, (4.11)

where $(p,. 4+ p_) = pand y, -y, are the compo-
nents of y: i.e., the system has a local density n* with
two (possibly equal) values p, and p_ arranged in a
checkerboard (sodium chloride) pattern (see Fig. 3).
When the bracket { } differs from its convex envelope,
the system has two phases, both with a density of the
form (4.11).

Before proving this theorem, we note some of its
consequences. Using the properties of the operation
ME, one can show that (4.9) reduces to the van der
Waals-Maxwell results (3.17) and (3.18) under con-
ditions (4.5) and (4.7). Also, Theorems 2 and 3 of
Ref. 4, together with (4.9), imply that (3.17) and (3.18)
do not hold in region (3) of Fig. 2. More precisely,
they imply the following.

Corollary 1: If K; > 0 and 2vK, > K;, and the
function a®(p, T) + (K, — $a)p? is not convex in p
(i.e., T is sufficiently low), then there are values of p
for which

alp, T) < CE[a"(p, T) + $ap?}.  (412)

The set of such values of p includes (a) those intervals
where a® + Zup? differs from its convex envelope and
also (b) those intervals where a° 4 (K, — $x)p?
differs from its midpoint envelope.

In the intervals (a) and (b) it follows from Theorem
3 that the system is in a state with (or has at least one
phase with) a density of the form (4.11), where p, #
p—. Such states can be described as spatially ordered
or crystalline.

We prove Theorem 3 by using Theorem 1 to obtain
upper and lower bounds on a(p, T). In the present
case, it follows from (3.2) that

G(n) = Tr‘" z( ()] + Kon(y)?

+ Ky Inny +e)), (413)
o=

where e, * - * e, are the unit vectors in Z*. An upper

bound on a(p) can be obtained by noting, from (3.6),

A A P PP
FiG. 3. The crystal structure in the
nearest-neighbor cell model (2-dimen- L. £ £ P, P-
sional case) as given by (4.11).
P PP PP
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that
a(p) < G(n') forany n'€C(p). (4.14)
Choosing n’ to be given by the right side of (4.11)
yields
G(n') = Ha%p,) + a'(p.)
+ 3Kop? + 1Kop?1 + vKypip_. (4.15)

Since $(p, + p)=p, we can put p, =ph,
where h is any positive constant such that p + h are
in the domain of @°. Then (4.14) and (4.15) yield

a(p) < #a*(p + h) + a®(p — h) + (3K, — vKy)
x [(p + h? + (p — W]} + 2vK,p%.  (4.16)

Since A is arbitrary, we can minimize the right side
with respect to A. Via (4.8), this gives

a(p) < ME[a*(p) + (3K, — vK)p?] + 20K, p%
4.17)
Using (4.6) and noting that a(p) is convex, we obtain
a(p) < CE{ME[d’(p) + (Ko — $0)p’]
+ (o — Kp)p*}. (4.18)

To obtain a lower bound on a(p), we first express G
in a more convenient form. Let us put

#(p) = a®(p) + $K,p*. 4.19)
Since n(y) is periodic, it follows that
S ln(y)] =3 ¢ln(y + a)] forany acZ’. (4.20)

yel yell

In particular, this holds if a is any of the e,. Thus
(4.13) reduces to

(n) = ﬁ E ng( » ¥ (4.21)
where
g(n, y) = o[n(y)] + oy + el
+ vKin(y)n(y + ;)
= ipln(y)] + 3yin(y + ey))
+ $Ki[n(y) + n(y + €)1, (4.22)
where
v(p) = @(p) — vKyp* (4.23)

[gx(n, y)/v can be interpreted as the free energy of the
bond between the cell at y and the cell at y + e,.]
From the definition of MEy it follows that for all p,
and p,

3p(p) + dy(po) 2 MEy(3p, + 3py), (4.24)
which with (4.22) gives
g, y) 2 &[in(y) + in(y + ¢))],  (4.25)

where

£(p) = MEy(p) + 2vK,p2. (4.26)
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But the definition of CE& implies
£(p) 2 CE&(p)

= CE{ME[a’(p) + (3K, — vK))p] + 2vK;p%}

= {(p), say. “4.27)
This gives

&, y) 2 L[3n(y) + in(y + €]  (4.28)

Substituting this in (4.21) and using the convexity of
{ gives

60 2 {15 35 30n0s) + bnGy + )

= {(p) forall neC(p), (4.29)

where the equality follows from (3.1). Since (4.29)
holds for all #, it follows that

inf G(n) > (p),
neClp)
which together with (3.6) and (4.18) proves (4.9).
The statements (4.10) and (4.11) follow from the
argument leading to (4.18). This completes the proof
of Theorem 3.

v

k=

(4.30)

5. NEAREST-NEIGHBOR INTERACTIONS AND
IDEAL REFERENCE SYSTEM

To analyze in detail the kind of thermodynamic
behavior predicted by the equation of state (4.9), we
consider in this section the special case

gr) =0 forallr, K;=0. 5.1

Consequently, the reference system is an ideal gas.
From (2.17) and (2.18) we see that (5.1) is a Type-11
system, so that K(r) must satisfy the conditions (2.18).
One can easily show that these conditions are satisfied
if and only if
K20 (5.2
We now have
o= 29K, > 0,

so that (4.9) becomes
a(p, T) = CE{ME[a(p, T) — }ap*] + ap*. (5.4)
Also, a° is the free energy density of an ideal gas, i.¢.,
a’(p, T) = kT[plog(A’p) — p], (5.5)
where A is the thermal wavelength.
Equation (5.4) can be simplified by using Lemma 5

of Ref. 4, which states that, for any function f(p)
and any constants L and M,

ME[f(p) + Lp + Ml = MEf(p) + Lp + M, (5.6)
CE[f(p) + Lp + M) = CEf(p) + Lp + M. (5.7)

(5.3)
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Substituting (5.5) in (5.4) and using (5.6) and (5.7)
gives

a(p, T) = Ay(Bp) + Cp, (5.8)
where
1) = CE{ME[nlogn — "1 + n*}, (5.9)
A(T) = (KT, (5.10)
B(T) = af(kT), (5.11)
C(T) = kT[log (A’kT[x) — 1]. (5.12)

The numbers 4 and B are nonnegative, while 4 is an
increasing and B a decreasing function of 7. Hence,
an immediate consequence of (5.8) is that there is no
critical temperature. As T varies, the graph of Ay(Bp)
against p changes only in scale. The temperatures at
which C = 0 are not significant because C appears
only in the combination Cp. The result (5.8) can be
simplified further by using the following.

Lemma I: The function

a(n) = ME(qlogn — i) + n*  (5.13)
is strictly convex.
Proof: We first prove that
al(m) >0 for 7531 (5.14)

From (4.13), one can write, for any continuous func-
tion f,

MEf(n) = }f[n + (] + 3f[n — o(n)l,

where d(n) > 0 is the function which minimizes the
right side. It follows that the right side is stationary
with respect to variations in 6, which implies

(5.15)

SIn 4+ 0] = f'[n — d(n)]. (5.16)
Using this, we deduce from (5.15) that
L MEf) =f'ln + 61 (5.17)

dn

The results (5.16) and (5.17) have a simple graphical
interpretation. Let MLg(#), called the midpoint locus
of g, be defined for any g, as the locus of the midpoints
of the horizontal chords of g(#). It follows that if
ML’ (n) is single valued, then

d '
W MEf(n) = f'(n), where d(x) = 0,

== MLf'(n), where d(n) > 0. (5.18)
We now choose

S = nlogn — i7?, (5.19)
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so that
S =logn—n+1 (5.20)

By sketching f” (see Fig. 4) and its midpoint locus, we
see that

d(n)=0 for n<1
>0 for n>1. (5.21)
Hence from (5.18) we have
60) = - MEf(n)
dn
=logn —n +1 for <1
= ML[logn —n + 1] for n>1, (522)
and from (5.13)
a,(n) = 6(n) + 2n. (5.23)
From (5.22) we immediately have
0'(n) >0 for <1, (5.24)
so that
a(n)>2>0 for n<I. (5.25)

To complete the proof of (5.14), we use (5.16), (5.17),
(5.20), and (5.22) to obtain, for n > 1,

0(n) =1log (n + ) — (n + 9) + 1
=log(n—90) —(n—208) +1. (526)
It follows from this that d(#) is given implicitly by the
equation

8 coth & = 1. (5.27)

[This implies that d(7), and hence 6(n), are single
valued, as required.] Differentiating (5.26) with
respect to 7 and using (5.27) to obtain

¢’ = [cosh (20) — 1)/[sinh (26) — 28] (5.28)
yields, after simplification,
() = -2
+ [cosh (20) — 1 — 262]/{d[sinh (26) — 26]}.
(5.29)

By sketching graphs one finds that cosh x > 1 + }x2
and sinh x > x for x > 0, so that the second term in

8(7)

ML(log7~ 7+1)
FiG. 4. Illustration of the functions 6(7) and &().
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(5.29) is positive for é > 0. It follows that
0'(p) > -2 for n>1 (5.30)
and from (5.23) that
al(m) >0 for 5> 1. (5.31)

This together with (5.25) proves (5.14). To complete
the proof of Lemma 1, we note from (5.22) (see Fig. 4)
that 0(») is continuous, and is zero for n = 1, which,
with (5.23), implies

a(l4) = a,(1-) = 2. (5.32)
This together with (5.14) proves Lemma 1. [The
result (5.30) means that the midpoint locus shown in
Fig. 4 has a gradient > —2.]
It follows from Lemma 1 that the CE in (5.9) can
be dropped, so that (5.8) becomes

a(p, T) = Aa,(Bp) + Cp. (5.33)

Hence a(p, T) is a strictly convex function of p, so
that its graph has no straight line segments. This
means that the system has no first-order transitions.
Furthermore, since a’(7) is discontinuous at n = 1,
it follows that ©%a(p, T)/0p* is discontinuous at
Bp = 1. Thus a second-order transition occurs when

p = kTa, (5.34)

and this transition persists for all temperatures. The
function a (), called the reduced free energy, deter-
mines the shape of the isotherms of a(p, T).

The chemical potential is given by

0
u(p, T) = 2 a(p, T) = kTu(Bp) + C, (5.35)

where p,, called the reduced chemical potential, is
defined by

() = ax(n). (5.36)
The function u,, which gives the shape of the isotherms

of u(p, T), is sketched in Fig. 5(a). To find the gradient
of u(n) at n = 14, we use (5.29) to obtain

' ——3% as 60 (5.37)
(see also Fig. 4), which with (5.23) gives
w(m) = ay(n)—3% as p—>1+4.  (538)

Figure 5(a) also gives the shape of the isotherms of
the density p(u, T) in the grand ensemble, because
p{u, T) is just the inverse function of u(p, T) for
constant T.

Note that for # > 1 the function u.(#) is given
parametrically in terms of é by Eqgs. (5.23), (5.26), and
(5.27). One can eliminate 6 as follows. From these
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Fic. 5. (a) Thereduced chemical potential u, which gives the
true chemical potential through Eq. (5.35). (b) The reduced pressure
arp which gives the true pressure through Eq. (5.43). (c) the pressure~
temperature phase diagram. (d) The functions 7, which give the
densities p_. through Eq. (5.51).

equations we have

0=4tlog(n+d)(n—9)—n+]1
= p, — 27, (5.39)

which gives
8 = [ — exp Q2u, — 2 — 2.

Substituting this in (5.27) gives an implicit equation
for p, of the form ¢(u,, n) = 0. Alternatively, u, is
given directly for n > 1 by the graphical construction

(5.40)

u.(n) = the locus of the midpoints of the chords
of (log n + n + 1) of gradient 2. (5.41)

To find the canonical pressure

oy T) = pgi(“(”—’n), (5.42)
ap\ p
we use (5.33) and obtain
m(p, T) = Amy(Bp), (5.43)
where
d /a,
min) = 1 5(2), (5.49)
1
which we call the reduced pressure. The following
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results are easily deduced from the properties of a,:

m(n) =7+ 4" for <1,

1 for =0
m(n) =12 for p=1— (5.45)
3 for n=1+
— 1 as #n— o0

The function =, is sketched in Fig. 5(b). From (5.43)
and (5.45) we obtain

w(p, T) = pkT + }ap® for p < kT/x, (5.46)
so that the transition occurs when

7w = (3k%[20)T? (5.47)
or, equivalently, when
7 = (3a/2)p%. (5.48)

The phase diagram for = is sketched in Fig. 5(c). It
would be a simple matter to plot the isotherms of =
accurately by using a parametric formula for =, in
terms of 4.

In the crystalline phase the local density n* has the
form (4.11). The functions p, (p, T) are found by
minimizing the right side of (4.15), which in the present
case yields

KT log (A'p,) + aps = m, (5.49)

where m is a Lagrange multiplier. This can be written
as

ps = (A7"e™" ™) exp (—apz/kT),  (5.50)

which closely resembles the integral equation of the
mean field theory of melting.2-* The solution is easily
shown to be

pi(p, T) = (kT|x)n  (ap/kT), (5.51)

where
n:(n) = 1 % (n) (5.52)

and &(n) is given by (5.27). The functions 7 are
sketched in Fig. 5(d). The important features are that
p. and p_ become rapidly unequal at the onset of
crystallization and that at high densities or low tem-
peratures the system approaches the density distri-
bution p, = 2pand p_ = 0.

6. CORRELATION FUNCTIONS

In order to understand better the structure of the
different phases of the model, it is useful to consider
the correlation functions. We consider first the k-
particle distribution function n(x,--*x,, N, D, T,
y, w) for N particles in (D) [see (2.9)], defined in
the usual way'? in terms of the 2-body potential (2.1).
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Note that n, is defined only for x, € Q(D). Following
Fisher,'® we define a space-averaged, infinite-volume

distribution function by
ﬁk(rl C T, Py Ta 1z (,0)

= lim
NyIDj»w [Q(D)] Jaw
N/|D}j-pw
.x+rk—1’Na D, T,)’, (0)‘ (61)

To understand the structure of the system in in-
dividual cells, we consider the short-range distribution
function

dx n(x,x + 1y,

A, p, T) = lim lim 72,(F
w—rw y—=0

where r™ = (r, - - - r,,). A similar function was defined

and studied by the author in Ref. 14. Some general

results for 7§ can be obtained from Eqgs. (10)~(13) of

this reference by replacing integrals with respect to y

L p Ty w), (62)

by summations with y in Z* and by replacing n, by n*.

For the particular system considered in Sec.
(10) and (12) of Ref. 14 give

5, Egs.

for p < kT/w (fluid)

p > kT/o (crystal).
(6.3)

The result for the crystal phase means that, in the short
range (i.e., in individual cells), the system “looks like”
a mixture of equal volumes of two different fluids of
densities p, and p_. This is expected, because there is
no crystalline structure in individual cells.

To understand the structure of the general system
over distances of order ¥~ [i.e., on the scale of the
long-range potential w™K(yr) and of the cell separa-
tion], we consider the long-range distribution function

Ay(r, p, T) = p*
= 3(p} + p2) for

K
Ae(s*, p, T) = lim lim ﬁk(il X ': .0, Ty, )

- y=>0
(6.9

Some general results for this function can be obtained
from Egs. (15) and (16) of Ref. 14 by again replacing
integrations over y by sums. For the particular system
considered in Sec. 5, these equations yield

Az(s, p, T) = p* if p < kT/a (fluid)
= 3o} + p%) for Y s,even
= p,p_ for X s, 0dd
if p > kT]a (crystal), (6.5)
where s, - s, are the components of s. For the
crystal phase, 7} is therefore periodic with the same

symmetry as #*. It does not tend to p? as'|s| - o,
i.e., there is “long-range order.”
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Finally, we consider the modified Ursell correlation
Sfunction (X, - - - %, N, D, T, y, w), defined in terms
of the n, in the usual way.}®> We define their space
averages #,(r*2, p, T, y, w) as in (6.1). To understand
the relevance of the Ornstein—Zernike theory!® to the
cell model, we consider the weighted Ursell function

iy (8", p, T)
- (S Sp1
Uy = " ,P,T}/, . (6.6)
14 ¥

= lim lim o*~
w—+w y—+0
The general results for this function can be obtained
from Eqs. (18)-(24) of Ref. 14 by again replacing the
integrals over y, s, and p by sums in Z°,

For the system of Sec. 4, with nearest-neighbor
interactions, which, in addition, is one dimensional
(» = 1) and has K, = 0, we deduce from (20), (21),
and (22) of Ref. 14 that for one-phase states

iy (s) = 38(0, s) + 38(1, s + 1), (6.7)
where p and T dependence is omitted from the nota-
tion, and S(y,y’) is the solution of the difference
equation

3aS(y + 1,5 + 3aS(y — 1, ") + agln*(MIS(Q, ¥)

= kT¢,,, (6.8)
subject to the boundary condition
S(y,y)—=0 as |y —y|— oo, (6.9)
where
2 0
i) =222, (6.10)

In the case « < 0, which yields the van der Waals—
Maxwell result (3.18), we have n* = p for one-phase
states, and (6.8) has the solution

S(y,y') = kT[(a3)® — T A1,

(6.11)
where

A = {[(a})?® - ot — aj}/o. (6.12)
Since a3 > —a for one-phase states (i.e., a® + Yop? is
convex), it follows that 0 < 1 < 1, so that (6.9) is
satisfied. Combining (6.12) with (6.7) now gives

This has the form of the one- dimensional Ornstein—
Zernike formula.'s In particular, ' becomes very
long range (4 — 1) as the critical point is approached
(@3 + « — 0). Unlike the Ornstein-Zernike formula,
(6.13) is exact and holds for all s € Z1.

In the case « >0 and ¢ = 0, which yields the
crystal states of Sec. 5, we have!?

n*(y)=p if p<LkTfa
= p, for y even

0(2]_*1'8'.

it p>kTla, (6.14)

= p_for y odd
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where p_ and p_ are given by (5.53). Also, from (5.5),
we have

ax(p, T) = kT/p. (6.15)

For p < kT|a we again obtain (6.11)-(6.13), but now
with —1 < 1 < 0, so that @) alternates in sign as s
varies. Now i3’ becomes very long range (A— —1)
at the freezing point. This is in contrast with the
behavior of the thermodynamic functions, whose
analytic forms in the fluid phase do not indicate the
freezing transition [cf. (5.46)]. For p > kT/u,one
obtains from (6.8), after a fair amount of work,

8(y, ¥) = h(Nh(y)gly — ), (6.16)
where
h(y) = pi for y even
= pi for y odd (6.17)
and
g(s) = (1 — mum ) hedl (6.18)
Here #_ are given by (5.51) and (5.52), and
k=01 =)t = 1)t (6.19)

Combining these with (6.7) yields, for p > kTJa,

iy (s, p, T) = pg(s) for s even
= (p,p_)ig(s) forsodd. (6.20)
From (5.52) and (5.27) we have

nyn_ = 6%sinh®*6 <1 for & >0, (6.21)

which implies that « is real and —1 < « < 0, so that
g(s) alternates in sign as s varies. The result (6.20)
again resembles the Ornstein-Zernike formula, but is
modified by the crystal structure. Again #y becomes
very long range at the melting transition because,
from (6.19) and (6.21), xk — —1 as § — 0. It is inter-
esting to note that in the present case (x> 0) the
function )’ becomes long range at the fluid—crystal
transition for all temperatures, while for the previous
case (x < 0) it becomes long range only at the critical
temperature and density of the gas-liquid transition.

The function @} is related to the pressure 7 [Eq.
(5.42)] by the compressibility formula

kTp _W
anipan 2 P
This can be either deduced from the general resuits of
Ref. 14, or verified directly from (6.13) and (6.20).
For the gas-liquid system (« < 0) the sum in (6.22)
diverges at the critical point, and hence d/dp — 0 as
expected. But, for the crystal-fluid system (« > 0)
the sum does not diverge at the melting or the freezing
side of the transition. Even though @}’ becomes long
range, the fact that it alternates in sign results in a

(6.22)
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finite sum (note that Y |#)| does diverge'®). Hence
on[dp tends to (different) nonzero values on each side
of the transition, as indicated earlier in (5.45) and Fig.
5(b). It would be interesting to know the extent to
which these results can be generalized to melting
transitions in more realistic models.

The results of this section can be derived by the
method of functional differentiation outlined in Ref.
14. The derivation is not quite rigorous but is based,
like that of Lebowitz and Penrose,® on the assumption
that certain limits and derivatives exist.

7. MAGNETIC SYSTEMS

As pointed out in Sec. 1, the model of this paper
can be applied to magnetic systems, and yields as
special cases both the Weiss theory of ferromagnet-
ism and the Néel-van Vleck theory of antiferromag-
netism.'? In this section we outline how this occurs.

We consider a system of N spins oy, - *,0y arranged
on those sites Xy, * -, Xy of a »-dimensional lattice (of
arbitrary lattice constant) which lie in the set (D)
defined by (2.9), i.e., only the cells {&(y/y)} contain
spins. The Hamiltonian is

(7.1)

O'GO'bU(Xa — Xps Vs (,0),
1<g<p<N

where v is given by (2.1). Using the canonical formal-
ism, rather than the more usual grand canonical
formalism, one can define the free energy per spin
a(p, T, y, w), where p is now the magnetization per
spin and

—-1<p<1. (7.2)

The free energy a(p, T) of the model is then defined by
(2.2).

One finds that the variational principle (3.6) again
holds if the condition n(y) > 0 in the definition of
C(p) is replaced by

—-1<n(y L1 (7.3)

Here, the random function n(y) represents the local
magnetization in the cell at y.

Theorem 2 also holds for the magnetic case. We
show that the Weiss theory of ferromagnetism follows
from Eq. (3.18) of Theorem 2 if ¢ = 0. In this case!®

a@(p, T) = kT{}(1 + p) log [}(1 + p)]
+ 31 — p) log [3(1 — p)I}.

In the canonical formalism, the magnetic field H(p, T)
is given as a function of magnetization p by

(7.4)

da(p, T)

H(p, T) = 2

(1.5)
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Combining this with (7.4) and (3.18) gives, with
a <0,

H(p, T) =0, for |p| < (1 + kTjo)t,

= kT tanh™! p 4+ ap, otherwise, (7.6)

which is just the main result of the Weiss theory.!®

All the results of Sec. 4 hold for magnetic systems
without modification. The crystalline states can here
be interpreted as states with antiferromagnetic order-
ing. We now show that the special case considered in
Sec. 5 yields precisely the Néel-van Vleck theory of
antiferromagnetism. In this case (5.4) holds, with a°
given by (7.4). The simplification leading to (5.8) does
not apply here, so that the behavior of the system is
more complicated. However, one can prove the analog
of Lemma 1; viz., if « > 0, the function

w(p, T) = ME[a"(p, T) — }ap?] + ap?

is a strictly convex function of p for all 7> 0. This
means that

(1.7)

a(p, T) = y(p, T) (7.8)

and that a(p, T) is strictly convex, so that from (7.5)
p is a continuous function of H. Hence, there are no
two-phase states (consisting of two phases with
different magnetization) and consequently no ferro-
magnetic transitions. (This question seems to have
been overlooked in the original derivations.) Now,
using essentially the argument of Sec. 5, we obtain
from (7.5) and (7.8)

H(p, Ty = kTtanh 1 p + ap

for |p| > (1 — kTjx)t (7.9)
and

H(p, T) = kT tanh™ (p + 0) — a(p + 6) + 2ap
for |p| < (1 — kT/w)}, (7.10)

where o > 0 and d(p, T) is given implicitly by the
equation

p? =1 + 6% — 26 coth Qud/kT).  (7.11)

[The two alternative expressions for H in (7.10) are
equal by virtue of (7.11), cf. (5.26)]. This is precisely
the main result of the Néel-van Vleck theory.!® It
implies that there is ordering whenever |p| < (1 —
kT/x)}. Consequently, there is no ordering for any p
if T > Ty, where

Ty = afk, (7.12)
which is called the Néel temperature. Some other
results are given by Garrett.1? Besides these, one can
show that, although H(p, T) is a continuous function
of p, its gradient is discontinuous at the order—-disorder
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transition, (I have obtained some other exact results
about the magnetization and susceptibility curves,
analogous to those in Sec. 5, which seem to be new
but not worthy of publication.)

The derivation of the Néel-van Vleck theory out-
lined here is an advance on the original derivations in
two main respects: (i) It is based on a statistical model,
and (ii) the existence and the checkerboard symmetry
of the antiferromagnetic states has been proved, not
assumed, i.e., the introduction of “‘sublattices’® has
been avoided.

8. DISCUSSION

The main results of this paper are summarized in
the abstract.

It would be interesting to study cases of the model
which are more general than the nearest-neighbor
case. The simplest problems arise in one-dimensional
systems. For example, in the case of nearest- and next-
nearest-neighbor interactions, what is the crystal
structure? It seems that the periods 2 and 3 are both
possible, or perhaps the period 6 occurs, or even a
transition between two crystalline states of different
periods. If the next-neighbor interactions are suffi-
ciently attractive, it seems that the system could have
both a gas-liquid transition (of the first-order van der
Waals-Maxwell type) and a second-order liquid-
crystal transition. Such a system may have a triple
point, which would be interesting to study. Possibly,
this also happens in the nearest-neighbor case of Sec.
5if K, <0.

For the case where the interactions extend to even
more neighbors, it is not easy to see what the periods
of the crystal states will be, especially in more than
one dimension. Possibly, some sort of group theory
could be used to study this problem in a general way.
The foundations of such a theory have already been
formulated.®

The model is related to the mean-field theory of
melting [see Egs. (3.6) and (5.50) and Refs. 1 and 5].
We therefore suspect that the latter theory will give
a similar second-order melting transition with no
critical temperature, but this has yet to be proved.

Apart from its obvious artificiality, the model does
not properly duplicate the mechanism by which
melting and freezing are currently believed to occur,
namely,” by the geometrical disordering and ordering
of hard (or sufficiently hard) spherical particles. The
model in this paper “freezes’” simply because repul-
sion between particles in neighboring cells favors a
nonuniform density. The model is more realistic for
antiferromagnets, since it roughly duplicates the
forces which cause opposite alignment of neighboring
spins in real antiferromagnets.



778

ACKNOWLEDGMENTS

I am grateful to O. E. Maly, C. Orton, E. R. Smith,
and especially Professor O. Penrose for helpful advice,
and to Professor C. Domb for acquainting me with
some useful references. Also, 1 gratefully acknowledge
financial support from “The Royal Commission for
the Exhibition of 1851.”

1]. G. Kirkwood and E. Monroe, J. Chem. Phys. 8, 623 (1940).

2J. E. Lennard-Jones and A. F. Devonshire, Proc. Phys. Soc.
(London) A163, 53 (1937); A165, 1 (1938).

3 D. J. Gates and O. Penrose, Commun. Math. Phys. 15, 255
(1969) (Part 1); 16, 23t (1970) (Part II). .

4 D. J. Gates and O. Penrose, Commun. Math. Phys. 17, 194
(1970).

5 R. Brout, Physica 29, 1041 (1963).

8 B. J. Adler and T. E. Wainwright, Phys. Rev. 127, 359 (1962).

? D. S. Gaunt and M. E. Fisher, J. Chem. Phys. 43, 2840 (1965).
For a related model which is solvable at one special temperature,
see M. E. Fisher, J. Math. Phys. 4, 278 (1963), and for a very recent
solvable model see R. J. Baxter, J. Math. Phys. 11, 3116 (1970).

8 D. Ruelle, Statistical Mechanics (Benjamin, New York, 1969),
Chaps. 6 and 7; G. Emch, H. J. F. Knops, and E. J. Verboven, J.
Math. Phys. 11, 1655 (1970). The cell model illustrates explicitly
many of the general results in these references: e.g., violation of the
“uniform clustering” condition (Emch et al.) is illustrated by our

Eq. (6.5). A different clustering condition (X lﬁm < ) breaks
down at the melting transition [see our Eq. (6.20) et seq.]. Also,

JOURNAL OF MATHEMATICAL PHYSICS

Properties of the Residues

D. J. GATES

absence of a critical point for melting transitions (Emch e al.) is
confirmed by the cell model. Furthermore, the variational principle
(3.6) (or its grand canonical equivalent?®) is closely related to that
obtained by Ruelle.
? J. L. Lebowitz and O. Penrose, J. Math. Phys. 7, 98 (1966);
é\'i.;gac, G. E. Uhlenbeck, and P. C. Hemmer, J. Math. Phys, 4, 216,
1963).

10'We do not need to give g(r) a hard core here, because the
*“corridors” used in Refs. 3 and 9 are empty in the present model.

11 M. E. Fisher, Arch. Ratl. Mech. Anal. 17, 377 (1964).

12 There are two choices for n*, namely (4.11) and the function
obtained by interchanging p, and p_ in (4.11). On the other hand,
the space-averaged correlations (Sec. 6) are unique.

13 M. E. Fisher, J. Math. Phys. 6, 1643 (1965). ‘

14 D.J. Gates, J. Phys., Gen. Phys. (Proc. Phys. Soc. London) 3,
L11 (1970).

15 J, L. Lebowitz and J. K. Percus, J. Math. Phys. 4, 248 (1963),
Egs. (2.2) and (5.10).

16 This corresponds to the ‘‘staggered compressibility” of Gaunt
and Fisher.”

17 L. Néel, Ann. Phys. 5, 256 (1933); J. H. van Vieck, J. Chem.
Phys. 9, 85(1941); C. G. B. Garrett, J. Chem. Phys. 19, 1154 (1951).
The Néel-van Vleck theory does not agrée well with experiment in
certain details. A better, but not exactly solvable, model is the anti-
ferromagnetic Ising model: see M. F. Sykes and M. E. Fisher,
Physica 28, 919, 939 (1962). For another exactly solvable antiferro-
magnetic model, see M. E. Fisher, Proc. Roy. Soc. (London)
A234, 66 (1960); A256, 502 (1960).

18 This formalism is not widely used. See, however, D. ter Haar,
Elements of Statistical Mechanics (Rinehart, New York, 1954),
Eqs. (12.225) and (12.226).

19 C. G. B. Garrett, Ref. 16, Egs. (5)~(7).

VOLUME 12, NUMBER 5 MAY 1971

in the Veneziano Model*

P. N. DoBson, Jr., AND W, A. SIMMONS
Department of Physics and Astronomy, University of Hawaii
Honolulu, Hawaii

(Received 19 August 1970)

Explicit formulas for the expansion coefficients of the Veneziano amplitude are derived. We show
that the problem of positivity can be reduced to a study of the zeros of certain polynomials,

I. INTRODUCTION

Since the original proposal by Veneziano! of a
simple functional form for a scattering amplitude with
crossing symmetry and duality, there has been inten-
sive study of both the mathematical properties? of the
model and its applications to hadron phenomenology.
Despite this intense investigation, many fundamental
features of even the simplest form of the Veneziano
model remain unresolved. In particular, the poles
‘which appear in the familiar “partial fraction”
expansion of the model should have positive residues;
otherwise, the poles would have to be interpreted as
due to negative norm intermediate states (ghosts).
While much work has been done on this problem,?-5
there has yet to be a definitive determination of a
region of model parameters for which all residues are

positive. It is true that a solution to this problem
would not necessarily eliminate the ghost problem in
the Veneziano model. Models such as that put
forward by Nambu® and co-workers, which deal with
the factorizability of the residues, indicate that
positive residues in the four-point function might have
to be interpreted as sums of residues from sets of
degenerate poles, some of which are ghosts. Nonethe-
less, a first step would seem to be a solution of the
positivity problem for the simple model.

Our purpose in this paper is to present a number of
mathematical results which are central to the study of
the positivity of the residues. We derive explicit
formulas for the coefficients of the partial wave
expansion of the Veneziano amplitude and show that
the problem of positivity can be reduced to a study of
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the zeros of certain polynomials. While the results
contained here have probably been derived by other
workers interested in this problem, they have not been
published, and their collection in one paper will prove
useful to other investigators.

II. PROPERTIES OF THE RESIDUES IN
THE VENEZIANO MODEL
In the body of this paper we will confine our
attention to the function!

I'd — a(s)HI' — «(1))
T —~ o«fs) — (1)

where a(x) = oy + «'x. Remarks on the general case
will be found in the Appendix. As is well known, this
function has the partial fraction expansion?

o I'(K 4+ «(t) 1

V60 =2 ST «0) — K

Vs, 1) = ¢y

In general, each pole in the expansion appears in a
number of partial waves. Since it is the residue
corresponding to a state with definite angular mo-
mentum that is of physical interest, we must consider
the partial wave expansion of the expression

DK + «(0) _

T = ")

e+ 1) (x+ K—1).

@
For convenience, we will consider only the case of
equal mass scattering (such as 7w scattering). Then
we can write

a(t) = g + o't = 20'k%z + (g — 20'k?) = az + b,
where z is the cosine of the scattering angle and & is
the center of mass momentum. T () is thus seen to

be a polynomial of degree K in z, and so we can
expand it as follows:

K
Tx(x) =J§0(2J + DCE(a, b)P,(2).

To find the coefficients C¥, it is convenient first to
write T () in the form

Tr(e) = (3

where we have the explicit expression for the Stirling
number

K
> sipham,

m=1

K-m 1 ( 1)K+m+n

23—

=0 n=0

x( —1+l>( 2K — m )(l)nx_mﬂ
K—m4+l/\K—m~—1/\n )

SE =
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For computational purposes, it is more convenient
to generate the S from the recursion relations:

S(l)_(K_ 1)1 S(I§I)= 1,
S =S + (K — DSP,, 1<m<K. (4

Now we substitute «(f) =az 4+ b in (3), use the
binomial expansion, and obtain

K K m
-5 St
j J

i=0 m=7j

Tx ()
where, for convenience in reordering the sum, we have

defined S = 0 for all K. Further reduction is made
by using the expansions

Z @r + 1)y}l Pa(2)

r=0
and
= z @r + 3)7:$1P or+1(2)s
r=0
where

= (J +2m)!2"m! 2J + 2m + DI,
This leads us to the result
HEA J T +2mpK
z ym * mBK—-J——2m(b)’

m=0

C¥(a, b) =

where [x] means the largest integer contained in x and

N —
LHOEDY S‘I?K—N’(l + K; N ) b
1=
The functions BX(b) have a number of interesting
properties. For example, it follows from (3) and (5)
that

&)

1 4"
BE_(b) = = — Tk(b
Eod) = =~ Telb).
The recursion relations (4) for the S¥ imply the
following recursion relations for the BX:
By’ =1, Bf = Tg(b) = I'(b + K)[T(b),
BY=(b+K—-1)BY7+BE", 0<N<K.

These, in turn, lead to

J _ J+ 1
U A UYTNY Al Py L
+ (b + K — nNCK,

When considering residues, we are interested in
C%(a, b) evaluated at a, and by determined by the
pole condition

(©)

o(s) =

This means

ag=a+ K- D2, bg=0b — (K—-1)2,
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where
a = —H(x + 42'p® — 1),
by = 33y + 4a'u® — 1),
and u is the particle mass.
For our purposes in the next section, it is useful to

consider some general properties of the Bi(bx)
considered as functions of b,. First we write

Bi(bx) = bxlbx + 1)+ - (bx + K = 1).
Now consider K even; i.e., K = 2k. Then
by =b—k+13

and

Biby) = (by—k+ D (b — D

= (b = DB~ b = (k= D]

The function is thus seen to depend only on even
powers of b, . Furthermore, from Eq. (6), we see that
if K is even, BX (b) will depend only on even or odd
powers of by according to whether N is even or odd.

Now consider the case of odd K; i.e., K = 2k + 1.
Then,

bopp1 = by — k

and

Biii(bar) = (by — k) -+ + (b — 1)
X by(by + 1)+ (by + k)
= by(bf — D(bi — 4) - - - (b7 — k).

This is a function involving only odd powers of b,.
Equation (6) again implies that B (bx) depends only
on even or odd powers of b, according to whether N
is even or odd.

III. POSITIVITY OF THE RESIDUES

We look first at the leading trajectory. Here we
desire to have

CRlax, bx) = v'(a )* 20,
which is easily satisfied for all X if
a > 0.
This means we must require
oy < 1 — 4a’u?
The first daughter trajectory gives us
Crlag, br) = v Hag)* 'Bff(bg) 2 0.

But the formulas of the last section easily provide the
result

BlK(bK) = Kbl s
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so that positivity of the first daughter residues is
guaranteed by taking

by 20 or oy 2> ¢ — da'pl

This is, of course, the same condition derived by
Oehme.*

Before considering additional trajectories, it is well
to make some use of the properties of the BS derived
at the end of the last section. Basically, these proper-
ties allow us to write the residue in the form

C¥ax, br) = (ag)’f K(a%, bd, K — Jeven,
= (ag)’big¥(a%, b)), K —Jodd.

The useful feature of this is that the factors in front
of the functions f%¥ and g¥ are already positive under
the restrictions developed for the leading and first
daughter trajectory. Furthermore, f¥ and g5 are
polynomials in the variables ak and 4, and they are
positive for sufficiently large |ag| or |5,|. This means
that we will have positivity outside some region
centered on by = 0, g; = —(K — 1)/2, whose bound-
ary is determined from f%¥ = 0 or g¥ = 0. The main
task now is to determine to what extent these regions
encroach on the quadrant

a 20, b >0 @

Let us now turn to the second daughter trajectory.
Here we find that

= ——————— } b
Fea= ok —mym\t g —1¢

so that we have positivity outside the ellipses

1 K—1¥ K+1
ay + =
:).1(-1(1 2 ) 12

for K=2,3,4,---. Numerical calculations show
that the case K = 2 dominates in the quadrant of
interest, so that we have positivity of residues for the
first three trajectories in the quadrant (7) for points
outside the ellipse

b+ ¥a + D=t ®

Note that the point @, = £, b; = 1, which corresponds

to &g = 4 and o’u? = 0, lies on this ellipse. This is just

the well-known decoupling of the 0+ daughter of the

f° in 77 scattering in the limit of zero pion mass.
For the third daughter we have

!

<
312K — 5! 2K -3

Thus we have positivity outside the ellipses

3 K—1¢ K41
ay + =
2K—3(1 2 ) 4

2 _K+1)
K 12 s

b} +

K+1
gg—a x— )

K 4

b} +

>
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for K=13,4,5, --. It is not difficult to show that
none of these ellipses extends into the quadrant (7),
and so no new restriction arises.

The computational effort begins to become formid-
able when we consider daughters beyond the third.
The fourth and fifth daughter trajectories have
residues depending upon the functions

£ K!
f24= ek —
2
X [(b% - K: 1) + 2K6—— 5 az"(bf - _K_l-;_l)
. 3 i (K DOK + 4)} )
2K — 52K — 3) 120
and
« _ K
8K = 512K — o)1
[t = A5k DF + 10 (b - EH)
+ 15 e (K + D(5K + 2)]
QK — 52K — 3) 72

(10

It is not too difficult to show that Eq. (10) does not
give rise to any boundary curve extending into (8).
For Eq. (9), however, the cases K =4, --,9 do
produce boundaries entering (8). Tedious numerical
checking shows that none of these boundaries gets
outside the ellipse (7) in this quadrant, so that in fact
no new restrictions on the parameters are required for
positivity of the fourth and fifth daughter residues.

IV. DISCUSSION

The investigation outlined in the last section makes
it seem a reasonable conjecture that the simple Venez-
iano function has positive residues for parameters in
the region described by (7) and (8). This region is
shown in Fig. 1. If we also require that «'u? be non-
negative, the region is further restricted as shown. We
have, in fact, shown that this region suffices for the

b
FIG. 1. Region of posi- r!
tive residues. The first
six trajectories have pos-
itive residues for a,, b,
in the first quadrant out-
side the ellipse shown.
Only in the shaded
region is a’u? positive as
well. This region of
positivity is shown in
Fig. 2 plotted in the
(otp, o’ p?) plane.

K//\ 1 o

VENEZIANO MODEL 781

05 @o

F1G. 2. Region of positive residues for the first six trajectories in the
(aq, &’4?) plane.

positivity of the residues of the first six trajectories
(see Fig. 2). It is clear that the brute force approach of
the last section eventually becomes unworkable and
is not suited to the study of trajectories beyond the
fifth daughter. Our formulation of the problem,
however, reduces it to a study of the positions of
zeros of certain polynomials, the f5 and g¥. There
exists a considerable classical literature on this sub-
ject, which provides some hope of an eventual
solution.
APPENDIX

The discussion of the text is based upon the special
form (1). However, in applications the more general
form
Vi (8), o) = o AU = 5(5)

(N + P — «(S) — (1))
with PN (Al

is often used. We shall indicate here how the partial
wave expansion above can be extended to (Al).

From the properties of the gamma function, we
have

_IN=-Y) T(N — X)I'(P — Y)
"IT(P-—Y) TWN+P—-X-Y)
which, after some manipulation, gives the general
partial fraction expansion

Va.p(X, Y)

__WpPw (Y —P+K)
e = T2 Fry — N+ 1)

(v eer=)
N+K—-1-X
According to the definition (2), the residues are
proportional to

Tg(Y—N+4+1), where K=K+ N—-P—1,
Since we identify a(¢) with y, the formulas of the text
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are modified by changing K to K’ and «, to oy —
N+ 1
Since the forms

(N — X)[(n~ Y)I(L—X—Y), N#n,

have been shown’® to be linear combinations of terms
of the type (A1), we need not consider them further.
The formulas derived here yield the partial wave
expansions of the most general Veneziano amplitudes.
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A complete set of angular functions for the four-body problem is given. Such functions form the basis
for irreducible representations of the orthogonal group O,, reduced according to the chain 0, > 0} x
0% X 0% > 0, ® 0,. The transformation properties of the functions are given and hence a matrix
representation of the permutation group on four objects is explicitly specified. The reduction of this
representation yields functions suited to Bose-Einstein or Fermi-Dirac statistics.

1. INTRODUCTION

In 1965 the method of k-harmonics was used by
Dragt! to obtain a complete set of angular functions
for the three-body problem. The motivation for the
new technique was a desire to treat all of the particles
on the same footing. The invariance group of a free
3-particle system in the center of mass is the orthog-
onal group in six dimensions, Og. Owing to the
difficulty of the reduction of O with respect to the
actual rotation group of the three-particle system,
Dragt was led to consider inner automorphisms of
O, generated by operators of the permutation group.
He found that there exists a subalgebra of the O Lie
algebra with the remarkable property that each of the
operators of this subalgebra commutes with the
operators of the alternating subgroup 4, < S;. This
(As-commutative) subalgebra is just the Lie algebra of
the group of three-dimensional unitary matrices SU,.
Hence, SU, became the “A4;-democratic’’ subgroup of
O, , and Dragt obtained his complete set of functions
through reduction of SUj according to SU; > 0, =
0., where O; and O, are the three- and two-dimen-
sional rotation groups of the system.

In the general n-body case, the significance of the
word “k-harmonic” is understood through a group
theoretical analysis of the system as carried out by
Lévy-Leblond and Lurgat.? The n-particle phase space
has a spherical structure, and, in the three-particle
case, the group Qg comprises the set of rotations

connecting all points of the six-dimensional, three-
body phase space sphere. O, is therefore “transitive”
on the three-particle phase space. Further, Lévy-
Leblond and Lurgat have shown that, in the n-particle
case, any group transitive on phase space [3n — 4
sphere in 3(n — 1) dimensions] may be taken as the
starting group of the chain, e.g., for n =3, SU,
is transitive on the 5-sphere of three-body phase
space.

If one assumes a polynomial form, homogeneous
and of degree k, for the basis functions, SU, tensor
traces are equated to zero by requiring that the poly-
nomials satisfy the six-dimensional Laplace equation,
and the quantum number k describes the simultaneous
localization of the three-body system.® This is useful
since k gives information about a ‘“‘global” or true
“three-body™ property of the state [as opposed to
earlier schemes which rely on a description of the
system through a (2 + 1) particle state].

In the present work we follow the *“‘global” method
of Lévy-Leblond and Lurgat to obtain a complete
set of basis functions or k-harmonics for the case of a
free, equal mass, four-particle system. The resulting
basis functions form a complete set on the nine-
dimensional spherical phase space carrying symmetric
representations of the orthogonal group O,. Since
there are no transitive compact, connected Lie groups
other than O,, 5 in the case of n-even,? n > 2, we
must use Oy here.
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has a spherical structure, and, in the three-particle
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case, any group transitive on phase space [3n — 4
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and of degree k, for the basis functions, SU, tensor
traces are equated to zero by requiring that the poly-
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and the quantum number k describes the simultaneous
localization of the three-body system.® This is useful
since k gives information about a ‘“‘global” or true
“three-body™ property of the state [as opposed to
earlier schemes which rely on a description of the
system through a (2 + 1) particle state].

In the present work we follow the *“‘global” method
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representations of the orthogonal group O,. Since
there are no transitive compact, connected Lie groups
other than O,, 5 in the case of n-even,? n > 2, we
must use Oy here.
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We note further that, even in the case of three
particles, SU; is not ‘“Sy-democratic,” but “As-
democratic.”” This idea leads to a study, in the four-
body case, of the subgroups of S, and application of
the ‘“democracy” concept to subgroups of O,.
Hence, one arrives at the chain Oy @ O} X 0} X
03> 0;> 0,4

In Sec. 2, center of mass variables are defined and
the infinitesimal generators for the groups O,
0} x 0% x 0%, 0, and 0, are written out in terms of
them. In this section we also see that the Q} x
03 x 0j subgroup is “V,-democratic.” ®

In Sec. 3 we construct the required basis functions,
distinguished by the eight quantum numbers {k, s, /;,
ly, Iy, my, my, mg}. (Of course, the coupling of the /;
to get a total angular momentum label L, M is
equivalent to the reduction of O} x O} x Of with
respect to O3 = 0,.) The functions are constructed as
an 0} X O: X 0} scalar polynomial piece, homo-
geneous of degree k, multiplied by a product of three
Y, m(0;, ;) functions. The requirement that the
whole function satisfy nine-dimensional Laplace
equation is equivalent to restricting ourselves to the
symmetric representations of O,. The O, label is £,
i.e., its value is simply related to the eigenvalue of the
quadratic Casimir operator of Oy. Our eighth label,
s, was discovered through the recursion formula
which results from the requirement that the functions
satisfy the nine-dimensional Laplace equation. Solu-
tions denoted in this way possess simple transforma-
tion properties under the group V; and the (23)
interchange operation. This is helpful since any of the
operators of §; can be written as a product of opera-
tors from V,, the (23) operator, and the (123) cyclic
permutation.

In Sec. 4 we study the problem of the construction
of operators which commute with the generators of
the 0 X 0% x O3 subgroup of Oy, and demonstrate
that there are no “S,-democratic,” independent,
eighth operators which can be constructed from the
elements of the Lie algebra of O.

In Sec. 5, a matrix representation of S, is given in
terms of the solutions of Sec. 3. This matrix repre-
sentation may subsequently be reduced, and states
obeying Bose-Einstein and Fermi-Dirac statistics
constructed.

In Appendix A sample functions are given. In
Appendix B we calculate the number of S,-symmetric,
angular momentum zero states.

The functions given here are useful for the deter-
mination of the binding energy and wavefunctions of
a bound system of 4-particles and for concrete
calculations in the case of “He.
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2. CENTER OF MASS COORDINATES AND
INFINITESIMAL OPERATORS

Consider a four-particle, equal mass® system with
r, the position vector of particle i in the laboratory
system. The problem of finding a suitable transforma-
tion into the center of mass has been discussed by
Lévy-Leblond.* He has shown that a useful set of
¢.m. variables are

E=ir+rn—r—r)
Ea=¥r,+r,— 1 —r), m
E=dr+r,—r—r),
Ei=1 Zt r
The free Hamiltonian operator becomes
0* 82 82)
)]
2 (85,1 08 08}
We now form a 9-vector of position
3
p=1E&] (3)
&

Considering the group of 9 x 9 orthogonal matrices
acting on p, through matrix multiplication, we see
that H is a 9-scalar and therefore has O, as its full
symmetry group.

The Weyl infinitesimal generators for the O,

group may be taken as
d d
~5,2).

Auz ¥} (Em 3
P o, e,

Here £,, is the ith component of the «th relative
position vector. The A, ;, satisfy the commutation
relation

[Aia;jﬂ ’ Ai’a’;i'ﬂ’] = i(aaa i’ J'ﬁ ip’ + 6/’13 6 j 5 Aia;i'a’
- 6ﬁa6 Atalﬂ 6«[1 awAiﬁia)

Elements of the direct product subgroup 0; x 0; x

03 are simultaneous rotations in each of the three-

dimensional spaces, one for each vector E,. Hence,
we have

Q)

)

R, 0 07[E
RO} x 03 x ODp~p' =| 0 R, 0 ||| (&
0 0 Ry ]LE,

The matrices {R;: j = 1,2, 3} are 3 x 3 orthogonal.
Obviously, if R, = R, = R;, we have a rotation of the
total four-body system in the center of mass. The

infinitesimal generators of Of are
i=1,2,3. )

The rotation group of the 4-particle system in the

lai = %eiﬂyAﬁu;ya’
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center of mass, Oy, is generated by the three operators
3
Li=X1l,, i=123.

2 ®)

The utility of the variables &; can be seen by
considering the transformations of the ¥, induced
by the action of the operators of the permutation
group S,.

S, has 4! elements, each of which may be expressed
as a product of elements from the set

G = {i, (23), (123), (24)(13), (14)(23), 3H(12)}, (9)
where (ijjk---t) means the cyclic permutation
(44, The operators {i, (24)(13), (14)(23), (34)(12)}
are a subgroup of S; which we label V,. We find, for
example, that

[2H(13) + (14)(23) + 34(12))p = —p. (10)
Hence, deﬁning
= [29(13) + (19@23) + 3H(12)] (1D

gives X as the nine-dimensional parity operator.

The product functions Y,’"l(él) Yo &) Y,’”=(§3)
are bases for the irreducible representations of the
0; x 0} x O3 group.

Since the Weyl infinitesimal generators of O3 X
‘0% x 0% all commute with the operators of V,,
basis functions for the irreducible representations of
0} x 05 X Oj can change at most by a phase when
acted upon by the operators of V. One easily has

Qa)13) Y (€D Y (€)Y 3(Es)
=(— )IIHSY (51)Y (fz)Y (42),
(18)(23)Y;™(ED Y () Y (&)

(12)
=(— )laHsY (&)Y (52)Yms(‘§3)
GHUYMENYr(E) YT
= (=Y mME) Y (EDY (&),
and
3 YmE)Y ) Ynaés)
_[( )11+ls+(_)la+ls+( )h+lz]
x YrE) Y)Yy, (13)

3. A COMPLETE SET OF ANGULAR FUNC-
TIONS FOR THE FOUR-BODY PROBLEM
This section will be divided into three parts. First,
starting from the free Schrodinger equation of four
noninteracting particles, we show the necessity of
introducing harmonic polynomials in 9-space. We
write the Laplacian in a spherical coordinate system,
and obtain a recursion formula relating coefficients
of the homogeneous polynomials.
Next, we solve the , =1/, =1/, =0 case, in-
troducing the needed label. We also derive the
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transformation properties of the solutions under the
(23) interchange.

Finally, following the technique of the /, =/, =
I3 =0 case, we write the complete set of angular
functions for arbitrary /;, and obtain the transforma-
tion properties under (23).

A. The Schrédinger Equation

The free wave equation in the center of mass is

h2
- '2; (szl + ng + Vé,)’l’(gl, &2, &)

= Ey(§;, 8:, &), (14)

where V¢ is the usual 3-Laplacian of vector E;.
The solutions, y(§,, &,, &), may be expanded in
terms of the angular functions of the 9-sphere

§ & &
W(E1, B2, B) = sz(P)U ( -, = 3), (1s)
p P
where p is the length of the nine-position vector
p"=21E;

The U, are the required angular functions. They are
related to the solutions of the 9-Laplace equation by

(16)

& & ¢ 1
n® 28 - Zhenn, o
p p p p
where
Pk(gl ’ EZ ’ gs) = z anlngna(ll’ 12: 13)517.'152251?a
X Y"“(EI)Y (&) Y&y (18)
In (18) the sum is over each n, such that
2in;=k; (19)

k is the degree of the O} X 03 X O3 scalar poly-
nomial piece.

The a, ,,n,(hh, %, ;) of (18) are related by the
requirement that P (€, E,, &) be harmonic. Using
this fact and Eq. (14) gives

1d d k(k + 7
LEr R+ (- D )i = 0. @0)
Hence we must solve
AQPk(gl’ E:, B9 = 0. 1Y)
The Laplacian now has the form
o 8 — — 12’—’). 22
- % (szas Efas b @)
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We label the k-polynomial part by
FrivieiE 8, 8) = 3 nignghs by B)ETERHS?

1n27n3 (23)
Now Eq. (21) becomes a differential equation for

gk.ll.la-la(fl . 52 ’ 53):
% 2i M

_(ﬁas ok~ & )Wﬁhh@“§“§9=0

(24)
From these results we have

z a'nlnzng(lla 129 13)

ninang

x {[my(ny + 1) — Ll + DIEPTERES

+ [ny(ny + 1) — LIy + DEPEPTE°

+ [ng(ng + 1) — L(Is + DIEPERE} = 0. (25)
Equating to zero the coefficients of terms of like form,
we get the required relation between the @, ,,n (1,

Iy, L),
[my(ny + 1) — L4 + 1)]an1'n2n3
= —[(ny + 2)(ny + 3) — L(l + 1)]an1—-2,n2+2,n3
— [(ng + 2)(ng + 3) — I3(/s + 1)]an1—2,n2.'ﬂ3+2'
(26)
B. Solution of the [, =/, = I3 = 0 Case
Specializing to the case of /; = [, = I; = 0, one has
the recursion relation
ny(ny + l)anlnzns = —(ny + 2)(ny + 3)a, s n,12.n,

— (n3 + 2)(n; + 3)an1—2,n2,n3+2' 27

It follows from (27) that
A ngny = 05 1y, 1y, 13 = 0dd, (28)
and that the a,,,,, are all independent. Here

F*(&,, &,, &;) is the complete function of (18), and the
only condition which we have at our disposal for
determining the coefficients is Eq. (27).

The 9%, &,, &) are eigenfunctions of seven
operators and the degree of degeneracy is the number
of solutions to the equation

ny, + ny =k,
with n,, ny, k being even. This is just /2 + 1.
We may express the a, , , in terms of the inde-
pendent ay,,, by iterating (27):

(29)

o
ninang

mEH () (ny + ny + 1 — 2))! (ny + 1 + 2))!
=0 j1(ny2 — Pl (ny + Dny + D! (ns + 1)!

X A0, nptny~25,n3+27
Ry (g 1= 2Dy + 1 4 2)!
=0 j1 (/2 — DH(ny + D (ny + D! (ng + 1!
(30)

a

X o, ngt2j,natni—25s

785

and

[
ninang

() (g 4 ny + 1= 2)! (s + 1 + 2))!
S0 (g2 — Dy + D (g + D! (ng + D!

a

X aO,nz+n1—-2.’i,’na+2f
MO (D (g + 1 + ny — 2)! (ny + 1 + 2))!
=0 jl(nf2 =D (ny+ D (ne + D! (ng + 1)!

(31

In (30) and (31) the superscript (¢, 0) means that n,/2
is (even, odd).

We could at this point construct a new operator
from the elements of the Oy Lie algebra (see Sec. 4).
Then the requirement that the operator so constructed
be diagonal on F%(&,, &,, &) would break the k/2 + 1
fold degeneracy. Instead, however, we proceed as
follows: The independent coefficients may be written
as {ag ;.5 $=0,2,--+, k}. By putting a4y,_,, to
unity for some particular s and setting all other
dy,ny,m, tO ZeTo, We obtain a polynomial which is
specified by k& and s. Since s takes on a different
value for each degenerate state, it may be taken as our
missing label.

We now work out the transformation properties of
Jks(&, &, &) under the (23) operator. Since
operators of ¥, change §; at the most by a sign, all
Frs(g,, &5, &) are invariant under V,. Hence, we
say loosely that s is “‘V,-democratic.”” Therefore, we
need only determine the transformation properties of
g% under the operators (23) and (123). (123) is
worked out later. However, since the action of (23)
is determined by the 2-3 interchange symmetry exhib-
ited in Egs. (30) and (31), we work it out here.

According to (27), (30), and (31), we have

X G0, np+25,natny—2i -

z Cs’(nl ’ n2 s n3)a0.k-s’,s’ ) (32&)

8'=0,2,-

k
anlnang = 22 CS’(nl L] n2 s n3)a0,s',k-—s’ .
e .

ninang

(32b)

Using the definition of the 9 and %, one then has
F4&,, &, &)
= 2 (2 Cs'(nlan’n3)a0,k—s’,s') ETEnErs (33)

ningng \ 8’
and

{rk’s(fl s 52 ’ 63) = z Cs(nl ) n2 ’ n3)§71“§;m§;‘3'

ninang

(34)

But $%(&,, &, &) may also be written as
z anlnangé?l E;‘sé;‘z’



786 HAROLD W. GALBRAITH

giving Comparing (36) with (34), we have the sought-for
TH &y, &)E, result

=2 ( S Colta e, nsda,s k_«)éz‘lssﬂsza (35) @3)FH(E1, &, &) = T 6, 8. (37)
HCI:;?M e We may obtain the (&, &, &) explicitly by

using Eqgs. (30) and (31) along with the requirement

PRI = Z Cdny,ng, "3)51“5235;2- (36) that g ,_, , be unity:

Fo(Ey, £y, &)
— _¥o (s/z (n,/2)! (k —s+ DI(s + 1D)!6(n, — 2 — 4j)) Emsk—n;—s+251§s—2h

Ui 2 =)t + DIk —ny— s+ 2 + DI =2 + D17 ?
(k)2 (n/2D)! (s + D! (k — s + 1)! 0[n, — 2(2j, + 1)] Enlék—s—ziz§s+2a‘g-—n1)
0 Jal(mf2 — ) (m + DIk = s =2+ DI + 2 —m+ DT 7

43 (”2 (/D! (k = s + D! (s + 1)! 6(n, — 4j) g ghmaesi g
m \i=0 i L (nyf2 — j)!(ny + DIk —ny— s+ 2+ DI(s— 2, + 1)

+"°-E”/2 (ny2)! (s + D!k — s + D! 6[n, — 4(j, + D]

Enlfk—s-zj253+2jz—n1) . (38)
0 ol (2 — ) ny + DIk =5 =24+ DI s+ 2, —m+ D10 F

In (38) (o, ¢) requires a sum over n,/2 (odd, even). Equation (38) gives the complete solution for the case of
11=12=l3=L=M=0.
C. Complete Set of Angular Functions

We now obtain a complete set of four-body states for arbitrary /; by the method of the previous section.
Consider again Eq. (25):
E anlnzng{[nl(nl + 1) — L + 1)]5?1—2'5;25:?3 + [na(ns + 1) — Iy(l, + 1)]5?1‘5;2_25;3

+ [n3(n; + 1) — Li(ls + DIEPEET2) = 0. (25)
We observe the following:

(a) The only nonzero coefficients are
{1t sutgrinigriy 1 2 05 Ja 2 0,5 2 0,y + jo + js = k — 311}

(b) the coefficients @, ;,,;, .., are all independent.
Equation (26) now reads

[+ idh+ih+ D=L+ 1)]a11+i1,12+ig.la+ia
= —[(ly +jo + )y + Jo + 3) — Ly + Dlay, 51200 ip42.1545

o — s+ ja + U5 + js + 3) — Llls + Dlayrii—2.104 401545542+ (39)
Iterating (39) gives

J1—2—24
i (J1/2)! p+ 2+ p)ja+3+p+21 2x0 N
) X (J1/2) ,,ﬂ,...[“z P)J P+ 21)] T (G + Ps+ 5 + 2L + DI
all+i1.lz+}'z.la+ia _tzso i—2 P=2.,4,
' (2 =)' 4! —:!)Iz [(]1 —p)—p+ 2L+ 1] 1 (4,=0)
- J1—2—2ty
§1/4-1 (/2! H [(Js+ 2+ PUs+ 3+ p+2)]
9=0,2, -
X Ay, iavivtia—2t, igtigren T tgo e
(/2 = ) (! H [(ji—=—pUr—p+1+2L)]
P=6.3, -
23>0
j j 142
X p=21—:[4.,...[(']2 + P)(Jz e+l 3)]}ah.lz+i=+2t:.ls+a’a+h—2fz (40)
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and
j1—2-28;

/4% a2t TT G+ 24+ p)Ge + 3 + p + 2L)]

P=0,2,

2= et TT [Gi= D0y~ p+ 1+ 20)

[
Ayyrirdetalatis —

28>0

11 [Gs+ pP)Us+ p+ 1+ 203)]

X ) pg4, Ay gt irtla—=2t1. dxtlst 2t
1 (=0)

F1—2—21y

4} (j1/2)!?=g [(]3 + 24 p)ja+ 3+ p+ 20yl

1—2

7 TL W= P = p+ 1+ 201042 = 1)1 1
P=0,2,

2{2>0
o+ P +p+ 1+ 21
X {D=12—\[;."'[(12 p)(12 P 2)]}‘111.lg+.’iz+2t2,la+ia+i1—2t2‘ (41)
1 (t,=0)
Here the superscript (o, e) refers to j,/2 (odd, even). Defining
k=k— %1 (42)

and fixing @; ;. s 1,45 @8 unity while the remaining independent coefficients are set equal to zero gives

Pl:ﬁ:i‘{:::”(& RINN

J1—2—211

H [(p+2+x—ji—s+2t)p+ 3+ «k—j,— s+ 2t +2L)]

° 52 ]1/2 1=0,2,":-
= -Z z ( tl ) j1—2 . .
I [Gi—pUGi—p+ 1 +20)]

< o

=02,
2t1>0 )
x | oL 16 = 2 )6 = 2k Pt L 2 g1 iy, 4 pypetirigrreimsngistesn
1 (=0
§1—2+21g

(4 LT +p+s+2=j)B +p+s =i+ 2 +20)]

+

30 ty j1—2 . .
I [ =P —p + 1+ 20)]
2{3>0 o
w | JL [(e—s+ 2+ p)(c—s+2+p+1+20)]
pbf,

X 6[]1 — 2(2t, + 1)15111“1512’“'3‘2‘2§§8+3—J'1+2tg

J1—2—2¢y
we . IT e —s—jy + 2, + 24 ple — 5 — jy + 2, + 3 + p + 21y)]
b3 |3 () e

FN =0\ 1

i1—2

p=10—'|; [(11 =Py —p+1+2L)]

2t1>0

IT (s —2t; +p)s —2t; + p + 1 + 2]

P B IO 9(]'1 —_ 4t1)£ix+f1§;2+"—1'1—8+2+2llé-:l’a—}-s—ml

X
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IT [Q+p+s—ji+2t)3+p—j1 + 5+ 2t, + 21)]

[

2 (5,12\ =65,
+ z (11/) =02, -
t2=0 \ Iy 1
D=l
2¢2>0

X p=24.-

1 (t,=0)

571+l1§l2+" 3—2tz§la—h+s+2fz + (3“ 0511512+K— Ig+s le(gl)Y (éz)y (63)

In Eq. (43) the superscript (o, ¢) on the summation
indicates that j, is to be summed over its values such
that /,/2 is (odd, even). The notation (5312) is a binomial
coefficient, and the matrix || | symbol means, e.g.,
take 1 when t,, = 0 or take the upper form when

1)
fay =0

We note the following which are easily derived
from Egs. (25) and (39):

(c) The j, are all even. (This follows from the fact
that the Laplace operator reduces the degree of a
homogeneous polynomial by 2.)

(d) « is always even.

(e) The spectrum of § is 0,2, -+, x or «/2 + 1
values. [Obviously s here is a generalization of that of
Sec. 3A, and the solutions of 3A are contained in Eq.
(43).]

Due to the (23) symmetry expressed in (40) and (41),
we have as before

(23)g%s = ghor=s, (44)

Equations (43) and (17) give the desired angular
functions for the four-body problem explicitly.

4. A COMPLETE SET OF OBSERVABLES FOR
THE FOUR-BODY PROBLEM

We now study the construction of operators which
commute with the Casimir operators from the chain
0,2 03 X 05 Xx 032 032 0,, and show that
there are no missing S, invariant operators.

The chain 03> 03 x 05 x 03> 0, > 0, gives
six Casimir operators:

09 A = zlAzaJﬂ’

iaif
O3XO2X03 21 i ? 0(=1,2,3,
0,1t = 312

0;:L,.

(e =5 =26+ p)x =5 =2, + p+ 1 + 21)]

1;1; [(11 ~p)ji—p+ 1+ 2]

6Ljy — 4(t, + 1]

(43)

The coupling of the three angular momenta requires
the use of an intermediate coupling operator. This
operator is defined by ?:8

T = eplalishs.

(49)

The fact that one more operator is required to com-
pletely reduce O, means that the O, representations,
when restricted to the 0} x 0% x 03 subgroup, are
not multiplicity free. Hence, an operator is needed
which differentiates between equivalent 0} x 0% x 0}
representations within a given O, representation.
Since Oy is a subgroup of 03 X 03 x 03, we need
only find an operator which commutes with the
infinitesimal generators of O} x 03 x 03, and, since
all infinitesimal generators of the O, Lie algebra
commute with A2, we consider only those operators
which, when constructed from the A, ;, are invariant
under O} X 0% x O3rotations. The Weyl infinitesimal

generators of O, form a skew-symmetric, 9 x 9
matrix
All A12 A13
[Aia;jﬂ] = 1Ay Ap Ap|=I[A,] (46)
AEl A32 A33
where the submatrix A,
= [Aigsr]: (47)

Ol x 0% x 03 rotations induce transformations on
the elements of the Oy, algebra according to

R, 0 0 R, 0 o
(A, l=[0 R, 0][A)JO R, 0] (48
0 0 R, 0 0 R,

Due to the orthogonality of the R; submatrices, we
are led to consider quadratic forms in the Ay p.

Such forms are conveniently generated in terms of
traces of products of the matrices A,, .
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Using equation (48), one may demonstrate ‘that
Tr [(A,,A,)"] are 0} x 03 x O3 invariant operators.
Using this result combined with the permutational
properties of the elements A,,.;5, one finds to second
order in the A, ;5

QP = Tr (A12K12) + Tr (]\121\12) + Tr (Azsj\zs)
+ Tr (Agshgg) + Tr (Aslyg) + Tr (A5A4), (49)
as an O} X 0% x O3 invariant operator which is

symmetric with respect to particle permutations.
However, it is easily checked that

Q(z) _ Az ] Zﬂ?s

and Q? is not independent.

One can go on to search for higher-order invariants
by the same technique, but to no avail, as we now
show.

The solutions for k=2, [ =L =1[,=0 are
expressed by

5‘2 = aozo&i + aoozfg - (a002 + 0020)53'

We require

(50)

(1)

QF* = of?*. (52)

The eigenvalue equation (52) must give a nontrivial
relation between the coefficients agyo and ay, , breaking
the degeneracy. Since { is an S, invariant operator,
we have

(12)F% = £9° (53)
and

(123)82 = exp (2—’;—’”)3‘2. (54)

It is easily shown that (53), (54), and (51) are
incompatible. Hence, we have the general result:
There are no independent, 0k x 02 x 03 and S,
invariant operators for the four-body problem in the
chain 0y > 03 X 0; X 03 © 0,.

We now ask: What is the maximum S, symmetry
which an independent eighth operator can exhibit?
To answer this, we first note the basic result that
0j X 0} x O} invariant operators may only be
formed from ({§;-§,V;,E,-V,}, j=1,2,3.
Hence, any O; X O3 X O} invariant operator is
V-democratic. Therefore, we study an operator such

(a) As; = 0if (I, + « — j — [))[2 is not integer;
(0) if (I + k — j — [)J2 = odd,

lo+K—j—2—]3—8
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that
23)Q23) 1 = £Q (55)
and

(123)Q(123)! = +Q. (56)

It is obvious, however, that Q2 is then an S, invari-
ant, implying that Q will not break the degeneracy.
Therefore, one must choose either (55) or (56),
implying that simple transformation properties under
(23) necessarily imply complicated properties with
respect to (123) and vice versa. Therefore, we have
justification for the solutions of Sec. 3 which have
simple transformation properties under (23).

5. TRANSFORMATION PROPERTIES UNDER
PARTICLE PERMUTATIONS

In this section we determine the transformation
properties of the solutions contained in Eq. (43),
under the action of the operators G, giving explicitly
the matrix representation of S, in the basis of Sec. 3.

We begin by again dividing the general solution into
a polynomial part and spherical-harmonic part

3
Pl iy (815 B2, Ba) = T&)) l] Yy, (57)

First consider the polynomial piece $%°(&,, &,, &).
From Sec. 3C we have

(23)F%8 = Fhx—s, (58)

For the (123) cyclic permutation we write formally

K
(123)8%* = ¥  A,9%7 (59)
§=0,2,
One may determine the matrix elements A in the
following way: Each distinct state $*-* was constructed
by requiring that a; ;,.. s+, be unity while the
other independent coefficients were zero. We have

- Wi gl iaglat
Fes(Er, €2, 8) = 2 @ipgiapriniagrsdtT T EST
Wi
E3

+ EPERTTTERTL (60)
Clearly, the term Eilélzﬁ""séés“ is unique to the
particular %, so that on applying (123) to §** we
look for the coefficient of the term ghgh*—7glts
which is 4,;. We get:

p+2+L~-L+DPp+3+ L+ 1L+ )]

1)20,2,"'

lotK—j~11~2

IT

P=0,2,00¢

A==l

e+ —j—L=—pl+L+14+«k—j—Dp)]
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lg~11+$8

X

1 (ll = 13 + S)
(©) if Iy + x — j — 1)/2 = odd,

T K= bt X+ bt p + 1)
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Ol + « —j + 1, — 2(; + s + D6, — 1);

2(lg+K—j—1)—11~13—3

- [12+K—j_11]/2

I1

p=0,2,*

C+p+L—=B)GB+p+ L+ )]

Ay = ( : )l+K-i—-l 2
Ltx—s—1—jl2/" 1-1-1_

p=0,2,*
lg+K—~8-—-lg—7F

X

P=2.4,-*

[(L=L+j+p+bL+j+p+ D]
1L s+hL+j=L+«

[+ c—j—L—=pb+hL+c—j—p+1)]

(d) if (I, — I, + « — j)[2 = even,
lytK—j—2—13—8

Il

p+2+L—-L+iXp+3+ 1+ 1+))]

A = ([12 + K ‘—‘J - 11]/2) P=0.2,-
T\l htsz )

I1

2=0,2,-*
I3—11+$

X

P=2.4,

1 (h=1I+5)

H h=L+pU+1+p+ 1)

e+x—j—h—-p+hL+1+c—j—p)

X0 =10+ L+ —j—2l; =200, — L, + « — j — 1);

(e) if (I, — I, + k — j)[2 = even,

2(lgtK—j—1)—ly—Lg~8

Q4+p+4L—=1)C+p+ L+ 1)

A = ( o + x—j— 112 ) 90,2,
8 — o
[l + x — s — Iy — j}j2/ wteich?
2 s — Jlf H
2=0,8,

lotKx—8—1g—7

X =24,

(s—L+i+ple++j+p+1)]
1L (s+h+j=l+x

(bt x—j—h—pl+h+x—j—p+1)]

XO0L+j—L)0l,—h+k—j—~00(=1,—1,4+2l;— x4+ j+2s — 4);

(f) AM = All—ls-lz+’<-—11 = 1.

Coefficients not found here are zero.

We have in (58) and (59) (with the 4,; determined)
completely specified the transformation properties of
the polynomial piece % under S,.

We now work out the S, transformation properties
of the spherical harmonic part, considering the special
case of L = 0.

We denote functions with eigenvalues {/;, , /3, T,
L, M} by T2 (£,), and functions which are obtained
through the use of standard coupling operators, e.g.,
1%, by i3 (£)). We may write

B ()
=m gm Alllnlamlmgms(T’ L, M)Yl":l(gl) Y{:’(éz) Y;';a(‘sfs)’
(61)

with the Ay 1,1 ,m, (T, L, M) the desired transforma-
tion brackets. Noting that T, the symmetric coupling
operator, may be written

i
T = 2 [1e, 12a), (62)

one has
Thoay£) = Y ™€), i#j#k =123, (63)

and

(__)ll+m1

Alllglamlm,mg(oa 0,0 = QL + 1)& (lalymomy I Iy — myp.

(64)
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It now follows directly that

(H(A3)Las"™ = (=)' Lgge™, (65)
(AH(23)Xgg" = (=)= Lges, (66)
(BHA2)LG"™ = (—)""XLge", (67)
(23)Xgpe" = (—)emdge", (68)
(123)Xghg™ = Lgws™ (69)

We now summarize the results:
(24)(13)1),(;:}01&18(&1 £ 52’ €3)
= (—)ll+lapng)ll2ls(gla 52’ E.p:i)’ (70)

(14)(23)P’(c)%1hl3(g1 > ng E3)
= (=)"*"Poo (%1, &2, E5), (T1)

(BN(12)P5s (& , &e, &)

= (=) ipRns (B, €, B, (72)
(23)Pian (€, , &y, Eg)
= (=)HThp g BB, (73)

(123)P’(§f)€)11213(§1 ] €2 ’ 23)
= 3 AJOIPEE BB, (0
Here

P’(c)i)%lzls(gl s €2 ] E.v3) .
= T5(&), &, E)LGEE,, &, &), (75)

Equations (70)-(74) give us the full matrix representa-
tion of the permutation group S, in our basis set for
the important case of L = 0.

CONCLUSION

A complete set of basis functions for the four-
particle problem has been developed. The basis was
given in terms of homogeneous, harmonic poly-
nomials, and the properties of the polynomials under
the permutation group was determined.

Construction of the eighth operator, “missing”
from the chain 0, > 0} x 0% X 03> 0, = 0,,
was discussed in detail including proof that an S,-
symmetric, independent operator is impossible.

In Appendix A sample states are given, and in
Appendix B we calculate the number of symmetric
L = 0 states of a given k.

The solutions given may be used for determination
of the wavefunctions and energies of a four-particle
bound system, hence lending themselves to calcula-
tions of *He.? They may also be used directly to investi-
gate symmetries and selection rules in the case of a
single elementary particle decaying into four identical
particles.
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APPENDIX A: DIMENSION FORMULA AND
SAMPLE STATES

The number of independent homogeneous poly-
nomial functions of degree k in nine variables is1®
°Dyy = (k + 8)!fk! 8!. (A1)
Since the Laplacian reduces the degree of such
polynomials by two, it imposes (k + 6)!/(k — 2)! 8!
conditions on the coefficients. Hence, the number of
harmonic functions of degree k is

n(k) = (k + 8)1/k18! — (k + 6)Y(k — 2)!8!. (A2)

In Sec. 3 we determined that in {ksll,lym,mym,} s
takes on x/2 4 1 values with xe€{0,2, -, (;X)}
depending on whether & is even or odd. The /; are all
possible solutions to

Sili=k—x (A3)
Hence, we obtain the following dimension formula
for the basis of Sec. 3:

k 5] _
Nky= 3 > (u + 1)
po() ). Wit 2
X 2+ D@L + D@ + 1)0p 14001, (A4)
The sum on P is over even (odd) values if & is even
(odd). It is not hard to satisfy oneself that
N(k) = n(k). (A5)

Below we list all solutions of degrees 1, 2, 3, 4, and
some of higher degree.

k=1, nl)=9
P 1,2188(2,-) = SlYinl(él)
P é?,?:"(gj) = fzyinz(éz)
Piomy(E:) = &;YT¥Ey)
k=2, n(2)=44

P08, = &3 — &
Pio"(E) = & — &
PR NE) = E.E,YT(ENYTE,)
PROOL (B5) = &6, Y(EDYE,)
PE (§,) = &:EYTAE)YTYE)
PRINE,) = EYT(E)
PIRENE,) = &3YT(E)
PINAE,) = £23Y (&)
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k=3, n(3) =156
P ﬁfﬁms(&) = 515 253Y;n1(é1)yinz(£2) Y;ns(éa)

P i€ = E8YME)YTEY)

PR (£ = B3, Y)Y TE,)

P ?r?ﬁ%s(gj) = ‘fffsygnl(&)yina(ég)

PN () = £EY(E)YT(ES)

P 3%’:53(&;) = 525 gYi"”(é 2)}"2"8(53)

PO () = £, YENYTH(E)
PUIE ) = (&3 — &SEDYMED
PRNE) = (645 — ToE)YT(ED
ngg:g(gj) = (—169‘5%2 + fg)Y;nZ(éz)
ngr?:(‘)](gj) = (—5352 + fzsg) Y;"z(éz)
ng?r?sl(gj) = (_Effs + 52253)Y1m3(§3)
ng?r?:(gj) = (—léafffa + fg)Yina(é:s)
PRANE,) = EYI(E)

PRSNE) = E3Yra(E,)
P03E ) = E3Y (L)

k=4, n(4) =450
PAOOE ) = £ + £ — 2038}
PAROE ) = E383 + S&1 — (E383 + &36D)
PUNYE ) = £ + £1 — LS
PUOBNE,) = (£33 — 2EDYTUE)
PARS(E) = (£ — ZEREDYTHE,)
PANE ) = (6263 — EXED) Y&y
PA20YE ) = (5382 — 3D YIE)
PAZRE ) = (£365 — EFEDYTHEY)
PROE ) = (&5 — 366D YTHE)

PR (B ) = (5,£8 — £ ) YTHED YT

PAOL () = (£,63, — 386 YP(E)YT(E)

Pé?r?:;ls(gj) = (5253 - %535253) Y;M(éz) Y{M(éa)

Pﬁllgn(lo(gj) = (&,£5E, — 2836y Ym(EDYTEs)

PAL (B = (5,8 — E)YT(E)YTH(E)

PAO (B ) = (£38, — $EI6E) YT (E) YT,
PE ) = E{YT(E)

PAE,) = E3YT(&,)
PANE ) = E3Y (&)

P :?37}1?;0(&1) = ‘fff 2Y?1(§1)Y;M(§Az)

P (E)) = B YTE)YT(EY)

Ptr?llxo(gj) = flnggnz(gz)Y;”l(él)

PUMS (E) = EEYI(E)YM(E)

P08 (£ ) = £EYI(E)YTE,)

P 3?7?313(21) = §g§3Y§ng(éz)Yins(§a)
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P20 (B,) = EX3Y (&)Y I(E,)
PR (E,) = Y M(E) Y&y
P22 (B) = ERIY(E)YIN(E,)
PRt (85 = E6EYTE)YTE)YT(E,)
PO2L (€)= &EEYTE)YTHE)YTHE,)
PiE (£) = &5,EYME) Y)Y TS,
k>4

PUIONE,) = (&,58 — 3&] + 3£3863 — BELHTYM(E)
PTEONE,) = (&,5583 + 2ED83 + 88365 — 2836283

— 388 — HEDYM(E)
PSOO(E) = EF + £ — 1250E3 — 125385 + 13818,
PRR(E)) = 3 — 3EEL — £7E] — EJED + EED

+ BAENES + TELERED — TENENE
PSISOE)) = &8 — LRERER — 30ERE2 4 Eled

+ E1&5 + E{&) + BRELENER

— LENEES + E263ED)

APPENDIX B: S,-SYMMETRIC STATES

We now give the results of the calculation of the
number of S, symmetric states which occur having
L = 0. We use character techniques throughout. The
well-known formula is

1
24

a = INXE)). (B1)

In this equation C; is an operator of class § of the S,
group, X(Cy) is its character taken in the matrix
representation of Sec. 5, and N, is the number of
operators belonging to class .

One soon finds that certain traces are automatically
zero for k and « having particular values, e.g.,
I, # I, # Ig implies that X[(123)] is zero.

We define

>il, =P, (B2)
and use equations (70)-(74) in (B1) to obtain the
following,.
A. k-odd

o) )

Nigy =ay + ay + ag + 31 b (B3)

€
In (B3) N((,‘,’)) is the total number of symmetric states

with
(k—=1)  feven
- (odd)' B4




FOUR-BODY PROBLEM

a, is the number of symmetric states having /, # I, #
I3 and (P — 1)/2 even,

a1=ze(

) A

([ e

(2—3)/2

+ (_1)(Pv9)/4(1 + (_)[(a—2)/2])}. (BS)
2
In (BYS)
P—-1 1 2
=7 - S{P * ((‘))] (B6)

must be an integer, and by the matrix symbol [ ] is
meant the integer term. The sum is over all P-values
having (P — 1)/2 even.

Likewise a, is the number having /; # I, # I; and

(P — 1)/2 odd:
ey G )
i IS P
14+ (=) 42
4

( )(P—15)/4

_ [(1-1)/2]
+E——pfeh @

The sum here is over (P — 1)/2 odd, and « is given by
(B6).
ag in (B3) is the number of symmetric states with
I, = I, =1;. Noting, however, that in this case
X[(123)] is not zero and that
X[(123)] = 3 45, (BB)
7

we do not calculate a, explicitly.

bgg) is the number having two 1’s equal, with

i(rﬁe;ei,)/én?ﬁﬁg (k — D2 (), and P[3 not an
be = H){ ( —21 r)
ke
-5 -)
[l

793

=205 =) Dol (57 -7 +)
- 6(-’6—;-:1 — 3r —~~1)
<ot (5 =) =55
(B10)

b§3) is the number of symmetric, L = 0, states of
I, =1, with (P — 1)/2 odd, (k — 1)/2 533, P/3 not
an integer:

=t (58 ()
,2{( Sl el (5 )
(5 =) el (57 )
(B11)

+20( 27)(k—5)
3 (57l )05

(52 - L) (5 )
(B12)

b§3) is the number having /; = /; with P/3 integer,
(P — 1)/2 even, but not including cases of /; = [, = I;:

. k=3

g =

w= R )
* [8: i 2@ (L:_ZI - 3r), (B13)
O
[0 e

b9 has (P — 1)/2 odd, but all other conditions
duplicate b(g)'

by = -—4—— +20<E—Zﬂ -~ 3r)
Gr+ )| (k=13 _
x {(37' N 2)/ :\(————4 3r), (B15)
k 1

bg =

- 3,)

[811335‘3]( F-v) o
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¥ keven, k[2 (532

N(,‘;? =c +eyt e+ Dy d§°).
As for k odd we have:

C, is the number of symmetric states of P2 odd,
L #1, #1,

ey (oL

3([(06 - 1)/2:])2 41t (=)' —

(B17)

af2 4
[(::3)/2]
(=)D W}, (B18)

where « is given by

el

and the sum is over all P/2 odd. C, is the number of
symmetric states of P/2 even, I, 5 I, # I,

F el
- 3[@( ~ D2+ 1} [(oc - 1)/2}

(B19)

(@ —2)2 + 1il{e — 2)/2
14+ (=) 4 2a
4
74 (a—1)/2 (a~1)/
+ (—‘1? (___1 - 2(_)[(&—;)/2] + (__)[(bé}fg*-l])
(p+ayie 1+ (_)[53:3’,531}, (B20)
+ () e

where now we sum on P/2 even. As before, C; is the
number for [, = I, = I;, and must be calculated from

(B8). dgg) is the number of symmetric states with P[3
not an integer, P/2 even, k/2 ((3"), and /; =

=3l -1)[o T oell—)
~o(i-r=3) e opl - -2))
(B21)
a=Sfo( -0  on) ()
- e(k‘;“—ar-—z»)

[ fon) (5 =)

(B22)

HAROLD W,
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Similarly, dgce)) is the number having P/3 not integer,
P[2 odd, k/2 (5, with /; = ;:

=2 ) oalE )
() e el (5 )
(B23)

= TR )
(=)o ) ()
(B24)

dgg) and dgg) have /; = /; and P[3 an integer, with P/2
odd and P2 even, respectively:

a=2o( 0 -G o)
(B25)
a5 )
(B26)
=300 -G a5 - ¥)
(B27)
=500 =) e (5 )
(B28)
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Coupled Fredholm integral equations of the second kind are derived for the electric and magpetic
fields scattered when a smooth, bounded, perfectly conducting three-dimensional obstacle is illuminated
by a time harmonic, monochromatic, otherwise arbitrary incident field. The kernels of the equations are
dyadics constructed from potential functions associated with the scattering surface, i.e., solutions of
Laplace’s equation satisfying particular boundary conditions. If the frequency of the incident field is
sufficiently low, the integral equations may be solved in a standard Neumann series. This is demonstrated
in an example, scattering of a plane wave by a sphere.

1. INTRODUCTION

The purpose of this paper is to present a new method
for obtaining solutions to the exterior boundary
value problem arising when a time harmonic electro-
magnetic wave is scattered by a perfectly conducting,
three-dimensional, smooth, closed, bounded obstacle
in the particular case when the wavelength of the
incident radiation is large compared with the char-
acteristic dimension of the scatterer. The surrounding
medium is linear, isotropic, homogeneous, and of
zero conductivity.

This problem was first investigated by Lord Ray-
leigh.! In his now classic paper he examined the
scattering of both acoustical and electromagnetic
waves by two- as well as three-dimensional obstacles.
For three-dimensional electromagnetic problems, he
showed that, in the limit as the wavenumber k tends to
zero, the electric and magnetic scattered vectors in the
near field region can be expressed in terms of solutions
of standard potential problems. Furthermore, he was
able to continue these solutions to the far field region
and arrive at his famous fourth power of frequency law
for the scattering cross section of objects whose
characteristic dimension is small compared with the
wavelength of the incident radiation.

Since that time considerable work has been done in
obtaining higher-order terms in the low-frequency
expansions of the scattered fields and in generalizing
Lord Rayleigh’s ideas. Kleinman? gives an extensive
bibliography up to 1965. The major contribution to
the subject came from Stevenson,? who showed that if
the scattered electric and magnetic fields (denoted by
E® and H°, respectively) are written in power series
of the form

a = ¢}
E' =) k"E;, H'=) k"H;, 1

m=0 m=90

then, by employing the Stratton-Chu formulation,

the coefficients E;, and H, in (1) can be written in the
form
E,.=F,+Vé,, H,=6G,+Vy,, (2

where F,, and G,, are known in terms of the previous
coefficients in the expansions and ¢, and y,, are
solutions of well-defined potential problems. The
expansions of the fields thus obtained are valid in the
near field region only, but they can be continued into
the far field. This procedure as presented by Stevenson
had certain weaknesses which were rectified by
Kleinman.*

Inherentin all three-dimensional low-frequency tech-
niques is the assumption that low-frequency expan-
sions of the type (1) exist. That this is so was proved
by Werner® who showed that, in the limit as k — 0,
the electric scattered field tends analytically to a
corresponding electrostatic field. The same is true of
the magnetic scattered field.®

In the present paper a new method is developed by
means of which one may obtain as many terms as
desired in the low-frequency expansions of the
scattered fields by successive operations on two
dyadic potential functions. These fundamental dyadics
are derivable from solutions of the Laplace equation
which satisfy certain boundary conditions on the
scatterers. The class of surfaces for which the method
applies is thus limited to those surfaces for which the
requisite potential problems can be solved. This is the
same limitation to which Stevenson’s method is
subject. The advantage of the present method over
Stevenson’s is that once the fundamental dyadics for
a particular surface are determined, we can find
successive terms in the low-frequency expansion by a
straightforward iteration of a pair of coupled Fred-
holm integral equations of the second kind, doing
away with the need to solve 3m boundary value
problems’ in the determination of E;, and Hj, in
(1). The present method, moreover, yields the fields
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everywhere in space, thus obviating the problem of
continuation of the near field results to the far field.
A disadvantage is that it applies (at least for the
present) only to the case of perfectly conducting
scatterers, while Stevenson’s applies to dielectric and
imperfectly conducting scatterers as well.

The main result of the paper is the following: If
E*(R’) and H*(R’) are the electric and magnetic fields
at R’ scattered by a smooth surface S when illuminated
by a time harmonic, monochromatic, but otherwise
arbitrary incident electromagnetic field and if e and h
denote e *F'E* and ¢ *F'H?, respectively, then®

hR') = ik JV{[Ye(R) + R x h(R)]- EQR | R
— R-hRV'NR | R")} dv

-V f i - (R)N“(R | R) ds, (3
S

eR) = —ik fV[[Zh(R) ~ R x e®)]- HY(R | R)

+ R-e(R)V (G"”(R |R)

[UR) — I]U(R’))]
4xC

+ f [ x e(R)] - H"(R [ R') ds. 4

s
N®. G, and U are all potential functions and
EQ HY and C are defined in terms of them. If k is
small, the right-hand sides are dominated by terms
which are known through the boundary conditions
on Ef and H?, thus providing a basis for the iteration
process which is shown to yield the exact result in a
particular example.

The plan for the development of the method is as
follows: The dyadic form of Green’s theorem is
employed in Sec. II to derive two vector integral
equations whose kernels are dyadic functions of
position. In Sec. II1 it is shown that the requirements
imposed on the dyadics are satisfied by certain of the
coefficients in the low-frequency expansions of
harmonically oscillating infinitesimal electric and
magnetic dipoles. Moreover, these coefficients (dy-
adics) are shown to be derivable from standard
potential functions. In Sec. IV we employ the expan-
sion theorem of Wilcox? to show that the electric and
magnetic fields of the scattering problem belong to the
same class of vector functions as the unknowns of the
integral equations, thus arriving (with the help of
Maxwell’s equations) at two coupled integral equa-
tions for the scattered fields. These equations may be
iterated to produce a Neumann series for each of the
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fields. In Sec. V the results are applied to the problem
of scattering by a sphere as a check and demonstration
of the method.

II. NOTATION AND DERIVATION OF TWO
INTEGRAL EQUATIONS

Let S denote a closed, bounded, regular surface in
E3, and denote the exterior by V and the interior by
V.. Let fi denote a unit normal vector directed from S
into V;. (Boldface denotes a vector, a caret denotes a
unit vector, and sans serif denotes a dyadic.) Erect a
Cartesian coordinate system with origin in ¥; and let
R be a position vector with spherical polar coordinates
(R, 0, ). The smoothness of the surface S is stipulated
by requiring that § be described by an equation

R=g(0,4), 0<0<m 0<¢$<2m, (5)
where g is continuously differentiable in 6 and ¢,
g(0, 0) = g(6, 2=), 6)
0 d
—8(0, 4) = = glm, 4) =0, )

¢ ¢

and by requiring that iR be uniformly Holder
continuous on S.

A vector-valued function F(R) will be called regular
in the exterior domain V if ¥

FR) e C(V), FR)eC' (Y US), (8
im [R x F(R)| < <o, )
R-x
lim |RV x F(R)] < oo. (10)
R-w

The object of this section is to derive two integral
equations for vector-valued functions regular in this
sense. The kernels of the integral equations involve
the following fundamental dyadic functions of two
points:

EOR|R) = V x (- '

) + EQRR),

47 IR — R'|
11)
where

VxVxEY=0 RRE€V, (12)
fix EY =0, ReS, (13)
lim [R?R x EY| < oo, (14)

R
lim [R*V x EY| < oo, (15)

and R

HYMR | R =Vx(———————
¢ R|R) 47|R —R'|

) + HOR | RY),
(16)
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where

VxVxHY=0 RREeV, 17
fixVxHY=0, RES, (18)
lim |[R?R x HY| < oo, (19)
R— o
lim [R®V x HY| < 0. (20)
R-w

V operates on the coordinates of the unprimed vector
R (V' and V, will operate on R’ and R,, respectively),
where R, denotes a radius vector to a point on the
surface S. | is the identity dyadic which is given in terms
of rectangular unit vectors by

2y

An explicit definition of these dyadics in terms of
potential Green’s functions for the surface S, as well
as a physical interpretation as coefficients in an
expansion of the fields due to infinitesimal electric
and magnetic dipoles, will be deferred to the next
section. The notation is motivated by this interpreta-
tion. Actually, the above properties of Ex’ and H{" do
not uniquely define these dyadics; additional restric-
tions will be imposed in the next section. They are
sufficient, however, to establish the following.

A A A A AN
| = aa; 4+ a, , + aza,.

Theorem 1: If F(R) is a vector-valued function,
regular in V, then

(a)
V' x FR) = — f [V x V x FR)] - EP(R | R") dv
1 4

+[ 1% FR)- U, x EXR, [ R) 85
S

(22)
and

(b)
V' x FR') = —f [V x V x F(R)]- H(R | R) dv
v

+[ thx 19, x FRY
S
- HO(R, | RY) ds, (23)

where fi is the unit normal from S into its interior,
directed away from V.

The proof of this theorem is based on the dyadic
form of the divergence theorem for infinite domains;
namely, if A(R) is continuously differentiable in V,
then

f V-AR)dv =f fi- A(R) ds, 24)
v S+80
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where V is the volume exterior to S and interior to S,
and S, is a large sphere whose radius will tend to
infinity. The unit normal i is always directed out of V.

This form of the divergence theorem follows
immediately from the corresponding theorem for
vector functions. Attention is drawn to the fact that
the dot product in the surface integral is not neces-
sarily commutative. By writing A(R’) as

AR) = FR) x (Vx P)+ [V x FR)] x P, (25)

where F(R) is regular in ¥ and P is a dyadic function
of position, eventually to be identified as one of the
fundamental dyadics E{Y or H{", and employing
(A3),1 we obtain the following Green’s identity:

J[VxVxF)-P—F-(VxVxP)]dv
v

=f i-[Fx(VxP)+(VxTF)xPlds. (26)

848
Since P is to be identified with one of the fundamental
dyadics, which have the same singularity at R’ = R,
it is necessary to delete from V" a small sphere S’ with
origin at R’ and radius r (see Fig. 1) and then let
r — 0, yielding, since V x V x P = 0 in the remaining
volume,

f(VxVxF)-Pdv

v

=f fi-[Fx(VxP)+(VxF)xPlds. (27)
848 o +8”

The behavior of P as R — oo is given in (14) and (15)

F1G. 1. Geometry for the application of Green’s identity.
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or (19) and (20). This, together with the behavior of
F, (9), (10), and (A1), guarantees that

lim
R-wx

L fA-[Fx (VxP)+(VxF)x P]lds

2r 4
= lim f d:ﬁf dOR*sin O[(R x F) -V x P
R-w JO 0

—(VxF)-(R x P)]
=0. (28)

Also, since the singularity of the fundamental dyadics
is the same, regardless of whether P is identified with
E or H, the surface integral over S’ is

Is,=limfﬁ-[Fx(VxP)+(VxF)xP]ds
S

r—0
= lim ﬁ-{Fx[VxVx(;')]
r=0 JS§’ 47 IR — R'I

+(VxF)x [v X (erl_R_l——iTI)]} ds, (29)

where r = |R — R’|. By (A7) and the fact that, on §’,
fi = —f = (R’ — R)/|[R’ — R], this becomes

Ig = A’fiTL‘A"{F x vv(_ ;‘1;)
+(V x F) x [v x (4;7;):“‘1& 0

By means of (AS5) this may be rewritten as

Ig = —lim L ¥ {(v x F)V(fl)

r=0 mr

-]
+(V x F) x [v x (— 4—7‘Tr)]} ds, (31)

and thus the integral of the term involving £ -V x
vanishes by Stokes’ theorem. With the help of Eqs.
(A1), (A2), and (A6), the remaining terms in the
integrand may be rewritten as follows:

£ {(V x FIV(—1/4nr) + (V x F) x [V x (—=1/4=7)]}
= (1/47r)R - [(V x B)f + (V x F) x (£ x ]
= (1/4mr?){f - (V x ) — (V x F)- [f x ( x D]}
= (1/4ar)[E - (V x F)f — (V x F) - (if — D]
= (1/47r*)V x F.

Substituting this result in (31) gives

VxF_ _vxFR). (33)

(32)

Igg= —lim | ds
ro0J8  4ar
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Using this result, as well as (28), in (27) yields
V’ x F(R')
= —fV(VxVx F).-Pdy
+Lﬁ-[Fx(VxP)+(VxF)xP]ds 34)
or, with (Al),
V'’ x F(R')
= —fV(V xVxF):Pdy —L{F-[ﬂ x (V x P)]

+(Vx F)-(fi x P)}ds. (35)
If P = E})’, then the boundary condition (13) implies

(Vx F)-(f x E)ds =0 (36)

and yields
V' x F(R) = —f(v xVxF)-EMdy
v

—fF-(ﬂxVx EMds (37)
S .

which, with (A1), establishes Theorem 1(a).
If P=H®", then the boundary condition (18)
implies

fF-ﬁxVxHﬁ“ds=0 (38)
s

and

V' x F(R") = —f(V xV x F). HY dy
14
- fs(v x F)« (A x H®) ds (39)

which, with (A1), establishes Theorem 1(b).

The integral equations given in Theorem 1 constitute
the basis for the solution of the low-frequency electro-
magnetic scattering problem. They will be employed
in Sec. IV to derive integral equations for the scattered
fields. In order to be soluble, it is necessary to have
explicit expressions for the dyadic kernels in terms of
potential functions, and this is accomplished in the
next section.

II1. THE FUNDAMENTAL DYADICS AND THE
FIELDS OF INFINITESIMAL DIPOLES

The fundamental dyadics appearing in Theorem 1
are not uniquely specified by (11)-(20). The present
section is devoted to defining physically meaningful
dyadics which not only fulfill the requirements for use
in Theorem 1 but also are expressed explicitly in terms
of standard potential functions.
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Using the definitions and notation of Sec. II; let S
be a perfectly conducting, closed, bounded, regular
surface immersed in a linear, isotropic, homogeneous,
nonconducting medium of infinite extent. Let J be the
volume dyadic current density, nonzero in a finite
region of V, the exterior of S. A harmonic time
variation (e~**’) associated with J is suppressed. The
total time independent electromagnetic fields in
dyadic form satisfy Maxwell’s equations

V x E(R) = ikZH(R), ReV, (40)
V x HR) = J(R) — ikYE(R), ReV, (41)
where 1/ Y = Z = (ufe)? is the characteristic imped-

ance of the medium, the boundary conditions
ixER)=0, Aa-HR,)=0, 42)

and the Silver-Miiller radiation condition. Specify
two types of current density, namely

J, = —ikI3(R | R) 43)

and
J,=—YV x [I6(R|R)]. (44)

The current distribution in (43) is that of three

orthogonal harmonically oscillating infinitesimal elec-
tric dipoles situated at R’, of dipole moment

(43)
where c is the velocity of propagation in the exterior
medium. Similarly, the current distribution (44) is that

of three orthogonal harmonically oscillating infinites-
imal magnetic dipoles at R’, of dipole moment

P, = —Ya, j=1,23 (46)
Let €, and H, denote the fields due to the current

distribution J, [Eq. (43)], and expand them in powers
of (ik):

Pei = aj/c3 j = 13 29 3:

H, = f(ik)"H‘;“. 47

n=0

2 (lk)"E(")

n=0
Substituting these expressions together with (43) in
(40)-(42) and equating like powers of ik yields

V x Ei"’ =0, (48)
V x Ef,") = ZHin_l), n>o0, (49)
V x Hio) = 0, (50)
V x HY = —1§R | R) — YEV, (5D
V x H®W = —YESY, n>1, (52)
AixEMN=0 A.-HY=0 onS, n>0 (53)

Similarly if E, and H,, denote the fields due to the
current distribution J,, [Eq. (44)] with expansions

= S GRED, H, =3 (RHD,

n=0 n=~0

(54)
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then the same procedure leads to
V x EY =0, (55)
V x E = ZH!™1Y 5 50, (56)
Vx HY= —YV x [ISR|R"], (57
V x H® = —YElY, n>0, (58)
AixEM=0 8-HP =0 onS, n>0. (59)

The terms E{)’ and H{" occurring in these equations,
that is, the second terms in the expansions of the
electric field due to the magnetic dipoles and the
magnetic field due to the electric dipoles, are
the fundamental dyadics to be used in Theorem 1.
Explicit expressions for these terms, derived in
Appendix B, are

EDR | R)

- (o)
47 |R — R'|
3 by R v N I
(__1_ija,. V'N“(R, | R)
4 s IR, — R
+VG£:z<RIR'))3,~, (60)

i ds

=1

HOR | R)
e
47 R — R'|
a, VNO®R,|R)
+3{—— - = fid
21( 4 fs IR, — R| ’

(61)

where N (R | R’) is the exterior Green’s function for
the Neumann boundary conditions on S, i.e.,

+ UNOR| R')) a,,

1
NYR|R)= — —————— + NO(R|R), (62
R[R) 4MR_R,'+,(| ), (62)
VN =0, R,R eV, (63)

aN(e)
o, (R,|R) =0, (64)

N‘) regular at infinity in the sense of Kellogg!?;
Gi,‘:‘,(R [ R’) are exterior Dirichlet potential functions
for S, viz.,

ﬁxVG“’(R[R)——ﬁxVx (——3—

VIGYR|R) =0, R, R eV, j=1,2,3, (65)
R — R|

f a, - V'N'“Y(R,|R)

S

i ds),
IR, — R

ReS, R'eV, (66)
fs fi-V,GEUR,|R) ds =0, (67)
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Go)(R| R') regular at infinity in the sense of Kellogg;
N (R| R') is an interior Neumann potential, viz.,

VINSR[R) =0, ReV,, ReV, (68)
fi, - V.NY(R, | R)
UR’
= —,7,(GOm, | R) - TRIERD) (g5
; 4=C

G (R | R’) is the exterior Green’s function for the
Dirichlet boundary condition on S, i.e.,

GR|R) = —(47 R ~ R)™ + G'(R|R), (70)

VIR |R) =0, R, R eV, (71)

GYR,|R)=0, R,eS, ReV, (72

G'*) regular at infinity in the sense of Kellogg; U(R)
is the conductor potential for S, i.e.,

UR) = L é?,‘{ GR,|R)ds, ReV; (73)

C is the capacity of S, t.e.,

C= L2 U(R,) ds;

= — 74
47 Js on, (74)

and the N (R | R') are exterior Neumann potential
functions for S, viz.,

VINY(R|R) =0, R R €V, (75)
a
A-VNYRI|R =ﬁ-Vx(—-—-’———
i i ) 47 |R — R'|
1 ".. 7 arls) ’
__fa, V'N, (RSIR)MS),
47 Js IR, — Rj

ReS, R'eV, (76)

N(R | R') regular at infinity in the sense of Kellogg.
With Ef) and H{Y thus explicitly defined, it is
straightforward to verify that (11)-(20) are satisfied;
(11) and (16) are valid by inspection, (12) and (17)
are valid by a direct calculation using the fact that the
curl of a gradient vanishes, the boundary condition
(13) is satisfied by virtue of (66) while the boundary
condition (18) is seen to be fulfilled using (51), (B32),
and (B35), and the conditions at infinity (14), (15),
(19), and (20) are all fulfilled because both E{’ and
H!" behave at infinity as [A(6, ¢)/R?] + O(1/R®).

1V. INTEGRAL REPRESENTATIONS OF THE
ELECTROMAGNETIC SCATTERED FIELDS

Using the same definitions and notation introduced
previously, we now direct our attention to the scatter-
ing of a time harmonic monochromatic incident
electromagnetic field by a perfectly conducting surface

J. 8. ASVESTAS AND R. E. KLEINMAN

S. If Ei(R) and H!(R) denote the incident electric and

magnetic fields, respectively, the problem is one of

determining the scattered fields E*(R) and H*(R) such

that

V x E'(R) = ikZH'(R), V x H'(R) = —ikYE"(R),
ReV, (77

i x E'R) = —fi x ER), #-H(R)= —i.H(R),
ReS, (78)

lim R[R x V x (E) + ik(Es)} =0,
R-w H H

uniformly in R.  (79)

Recall that A is directed from the surface S into its in-
terior V;, away from the exterior V.

In addition to the Silver—Miiller radiation condition
(79), the scattered fields E* and H® satisfy the con-
ditions (9) and (10), namely

[RxFj <o and |RV xF| < w0, as R—» co.

and

This follows from an expansion theorem due to
Wilcox® which asserts: If F(R) is a vector radiation
function [satisfies Maxwell’s equations (77) and the
radiation condition (79)] in an exterior region R > ¢,
then F(R) has an expansion
eikR o Fn(B, ¢)

F(R) - R ngo R" ’
valid for R > ¢, which converges absolutely and
uniformly in the parameters R, 6, and ¢ provided that
R > ¢ 4+ ¢ > ¢. Furthermore, the series can be
differentiated term by term any number of times with
respect to R, 0, and ¢, and the resulting series all
converge absolutely and uniformly.

The scattered fields are thus regular vector valued
functions suitable for use in Theorem 1. Letting F be
E® in Theorem 1(a), (22), and H® in Theorem 1(b),
{(23), and making use of Maxwell’s equations (77)
and the boundary conditions (78), we obtain the
following integral equations:

(80)

ikZH'(R) = —k* f E‘(R) - EL'(R | R") do
Vv

- f [A x EXR)] - [V, x EOR, | R)]ds,
S
@D
E'(R) = —ikZ f H(R) - HP(R | R) dv
14
- L[ﬁ x E(R)]- H(R, | R) ds. (82)

The first of these equations may be written more
conveniently by taking into consideration the explicit
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form of E&. It is easily shown, by using (B1), (B11),
and the definition of the exterior Neumann Green’s
function (62), that

V x E‘,},’(R | R) = —VV'NYR | R) — 16(R | R)).
(83)
For R € S and R’ € V the d function does not contrib-
ute; hence this result, together with the identities

(A1) and (A5), allows the integrand-of the surface
integral in (81) to be written

[i\l X Ei(Rs)] * Vs x E(rrlz)(Rs l R’)
= i {[V, x ER)]V'N(R,|R)
—V, x [EXR)V'N(R, I R} (84)

The A.V, x term in this expression vanishes by
Stokes’ theorem when integrated over the closed
surface S. Moreover, the incident field E¢ in the
remaining term must satisfy Maxwell’s equation
V x E! = ikZH'. The surface integral in (81) can then
be written

f(ﬁ x E) - (V x EMyds = —isz f-H VN ds.
s S
(85)

Utilizing this result in (81) leads to the simplification
incorporated in the following theorem.

Theorem 2: If E* and H* are electromagnetic fields
scattered by S when illuminated by E' and Hi, i.e., if
E® and H? satisfy (77)-(79), then

H’(R) = ika E'(R)-EXM(R | R) dv
vV
+ V| [ HRINOR, [R) ds, (86
S
E'(R) = —ikZ f H'(R) - H"(R | R") dv
14
— [ xR HOR R a5, @7
S

where E!Y and H!" are the fundamental dyadics (60)
and (61) and N'® is the exterior Neumann Green’s
function for Laplace’s equation [(62)-(64)].

At this point one might be tempted to solve this
coupled system of integral equations for small £ by
iteration, using the surface integral terms, which do
not have k as a factor, as the zeroth-order iterates.
Such a procedure will, unfortunately, be unsuccessful.
The reason for this lies in the fact that neither the
surface integral term nor any of the iterates will
contain ¢*% as a factor. However, Wilcox’s theorem
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(80) makes it clear that the scattered fields should
contain this factor. This leads to the conclusion that
partial sums of the Taylor series expansion of ¢*¥
appear in the iterates. As the iteration proceeds,
positive powers of R will appear in the volume
integrals and these integrals will diverge. This, in
fact, is the cause of the breakdown of Stevenson’s
special method after three terms in the expansion are
found.®

To avoid this difficulty, the exponential e™% is
removed by introducing the following vector functions:

e(R) = ¢ *EER), h(R) = ¢ *EHY(R). (8%)
The motivation for doing so lies in Wilcox’s expansion
theorem. From (80) it is seen that, at least in the
region where the expansion is valid, the new fields e
and h do not contain the troublesome factor e™%.
Furthermore, these fields are regular in the exterior
region ¥ and hence may be represented by using
Theorem 1. This same device proved successful in an
analogous treatment of scalar scattering problems at
low frequencies.!#1® Identifying F with e in Theorem
1(a) and with h in Theorem 1(b) leads to

V' x e(R) = — J [V x V x e(R)] - EP(R | R") do
II

+f (A x e(R)] -V x EQ(R| R") ds
s

(89)
and

V' x h(R) = — f [V x V x h(R)] - H"(R | R") dv
14

+ f {i x [V x h(R)]} - H’(R | R) ds.
8
(90)

With the definition (88) of e and h and Maxwell’s
equations, it follows that

V x e = ik(Zh — R x e), (91)
V x h= —ik(Ye + R x h), (92)
and
VxVxe==ke+ ZR xh) — ikV x (R x e),
(93)
VxVxh=Fkh-— YR x e) — ikV x (R x h).
(94)

With these results for e and h, the following theorem
may be established.

Theorem 3: If E® and H® are the electromagnetic
fields scattered by the perfectly conducting surface S
when illuminated by E! and H', i.e., E° and H" satisfy
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(77)-(79), and e = e~**BE®, h = e~*EH?, then
h(R") = ik fV{[Ye(R) + R x h(R)] - EX(R | R")
— R-hRV'NYR|R)} dv

-V f it - h(RON(R, | R') ds (95)
S

and

e(R) = —ik L[[Zh(R) — R xe(®]-HYR|R)

+ R- RV (GR|R)

n UR’) — URYUR )):| b
47C
+[ 10 x eI HOR RV, 09
s
where E{’ and H{" are the fundamental dyadics (60)
and (61), G*’ and N'* are the exterior potential Green’s
functions for Dirichlet and Neumann conditions, re-
spectively, (70)-(72) and (62)-(64), U is the conductor
potential (73), and C is the electrostatic capacity of S

[(74)].

The proof of this theorem rests on straightforward
manipulation of Eqgs. (89) and (90), the highlights of
which are indicated in Appendix C.

These integral equations are in a form which permits
solution for the unknown fields e and h, provided that
k is sufficiently small. There are two slightly different
procedures, both of which depend on the fact that the
surface integral terms do not involve the unknown
fields since the boundary conditions (78) imply

A -h(R,) = —e "B+ . HY(R)), 97)

fi x e(R,) = —e "B x E(R,). (98)

One method of solution involves iteration of these
coupled Fredholm equations using the known surface
integral terms as the zeroth-order iterates.

The second method leads more directly to the low-
frequency expansion. It involves expanding the known
terms as well as the unknown fields in powers of k,
then substituting these expressions in the integral
equations, equating like powers of k, and obtaining
recursion relations for the coefficients in the expansions.
Explicitly, write

00

e =3 (ikye,, h=-3(ik),,

n=0

(99
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-V f fi-hN°ds =V’ f By . H(R,)N(R, | R') ds
S S

= i(ik)"fn(R’), (100)

f(ﬁ x e) - H!™ ds
s

= - L e Rfi x E'(R,)] - HO(R, | R) ds

= Eo(ik)"gn(R')- (101)
That e and h may be written in this form follows from
the definition (88) and the work of Werner,*® who
showed that the electric and magnetic scattered fields
tend analytically to corresponding electrostatic and
magnetostatic fields as k — 0. The power series
representations of the surface integral terms follow
from the analyticity in & of the incident fields whether
they are dipoles or plane waves. Substituting (99)-
(101) in the integral equations of Theorem 3 and
equating like powers of ik yields the following recur-
sion formulas:

h(R") = £y(R), (102)
by (R)) = fy{[Yen(m + R x b(R)]- EVR | RY

— R-h,(RV'NR|R)} dv + f,,,(R),

(103)

&(R") = gy(R), (104)

ena(R) = — fv[[Zhn(R) — R x e,(R)] - HYR | R)
+ [R- e"(R)]V'(G“”(R |R)

+ UR") — UR)U(R")

4nC ) } @+ EalR).
(105)

Y. SCATTERING OF A PLANE WAVE BY A
PERFECTLY CONDUCTING SPHERE

The results of the previous section are applied here
to the problem of scattering of a plane wave by a
perfectly conducting sphere. The sphere is of radius a,
and its center coincides with the origin of a rectangular
coordinate system (x, y, z). According to the notation
of the previous sections, V; denotes the volume of the
sphere, V' the rest of space, and S the surface of the
sphere. The unit normal i is directed away from ¥V
and into ¥,. The plane wave propagates in the direc-
tion of the negative z axis with its electric vector
polarized along the positive x axis. A spherical
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coordinate system (R, 8, ¢) will be used along with the
rectangular coordinate system (x, y, z).

The starting point in the problem is to find the
explicit forms of the dyadics H{" and E{. The
derivation of these dyadics involves frequent use of
the Dirichlet and Neumann static Green’s functions,
and these are given below.

The expansion of the free-space static Green’s
function in spherical harmonics is

1
47 [R — R'|
1 «© n ) m "
=——3 Zem PY(cos 6')P}(cos 6)
47 n=o m=o )'
X cos m(¢ — ¢)R”+" (106)
where R_ = min (R, R’), R, = max (R, R'), and

€, is the Neumann factor: ¢ =1, ¢, =2 for
m=1,2,---. The functions P, are the associated
Legendre functions defined by

(D" (et m) (s
2" m!(n — m)!

Pl(x) =

1 - x)
2 b
-1 <x< 1. (107)
This definition is according to Magnus et a/.2® and all
the contiguous relations for these functions that will
be used subsequently can be found there (Ref. 16,
p. 171). The regular part of the exterior static Dirichlet
Green’s function [Eqs. (70)-(72)] for the sphere is
given by

x2F1(1+m+n,m-—n;1+m;

G(o)(R I R:)
© n ) N )
47T EO mz_oe (n + m)! v, Pnlcos § )P (cos )
X cos m(¢ — ¢)(RR’)"+1 , (108)

while the regular part of the corresponding Neumann
Green’s function [Eqs. (62)-(64)] is given by

NOR|R)

1 2 =2 n (n _ m)
T da TPy o
47 7o m_oe n+1(n+ m! pr(cos 8)
gt
x picos Oy cosm(@ = &) ey (1)

The conductor potential for the sphere (73) is
U(R) =f 2 G'“Y(R, [ R) ds
s on,

J a
- __G(e)R =2
LaR, ®,[Ryds =,

Yy (110)
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and the electrostatic capacity (74) is

1 2
C—4— sa— U(R)ds——f d«;bf do = a.
(111)

To complete the explicit calculation of the funda-
mental dyadics, the following intermediate results are
useful :

The integral of the exterior Neumann function in
(60) is

A 1a7le) '
__1_‘7 xJ‘a,.-VN (R,|R)
4 s |R,—R|

1 R ”

= — 3 V'V xR
4

i, ds

Z (n —_— m)' a2n+1

a=1 m=o (1 + 1)(n + m)!(RR")"*
X p(cos B)py(cos 8") cos m($ — ")

= =47V x (GR R) - HEIED

47C

+ NOR| R'))R 112)

the interior Neumann function [(68) and (69)] is
. , 2 2n 4+ D (n — m)!
NYR|R ¢
R|R)==3 Ye, =y

47 7=1 m=o0 n

X P™(cos 6)P(cos 6')
x cos m(¢p — ¢’ )Rm+1 + 2R, (113)

the integral of the interior Neumann function appear-
ing in (61) is
Ly f i, VN, |R)
4m s |R;,—R|

fi, ds

a ’VxRZZ
7T

,,,(n — m)! a** "' P (cos )P (cos 0') cos m(d — ¢’ )
n(n + m)! (RR')*+

(114)
the functions G'¢) [(65)—(67)] are

(e) 2n+1
GmR|R) = - -~ ,gl n(RR')™

x (f(_’i____

m)! o
2ot )'P "(cos 6')
X PZtl(cos ) sin [(m + 1)¢ — m¢']
n(n—m++1)!
m=1 (n + m — 1)'
X P™(cosB)sin [(m — 1)¢ — mqb']),

(115)

Pr(cos 6")
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G:;(R l R) = _l_ 0 iz
4 =1 n(RRY)"H

1n—m)! . ,
X (go(-*—-—-'——n n )'Pn(cose)
X p™{(cos §) cos [(m + 1) — md’]
_ 5 (p=m+ D! P™(cos 0")
m=1(n + m — 1)!
x P™Ycos @) cos [(m — 1)¢ — mrﬁ’}),
(116)
{e} . _1_ > < f".(_’f_._.l m
Ga(RlR)— 27 nmt m=1 n(n + )’P(COSG)
2n+1
X P7(cos 0)sin m(¢ — ?S)(RR el
(n

and the functions N2’ [(75) and (76)] are

(&) a2n+1

NOR|R)=— 3 —————
el( I ) 4 "21 (n + 1)(RRI)71+1

X (E:O H P(cos 8)
x P™(cos 0) sin [(m + 1)¢ — mg']
< (n —m + 1)! m, #
+mz=1-————~—-—-—(n e 1)!P,,(cose)
x P™(cos 8) sin [(m — 1)¢ — mq&’]),
(118)
(e) N _1_._ o az'n«i—l
Na®|R)=— "2 (n + D(RR)™
n—1 _
X (goH Pr(cos 6")
x p™(cos 8) cos [(m + D¢ — mé']
< (n - m+ ) m ’
T&i(n+m— 1) pu(cos )
X pI(cos 6) cos [(m — 1)¢ — msb']),
(119)
NE®R |R) = Lss _m _(n— m)! P™cos 6

27Tnx1m—1n+1(n+ )'
X PJ{(cos 8) sin m(é — ¢)

2n+1

(RR )n+1
(120)

The derivation of these results is straightforward
though tedious, with repeated use of the orthogonality
of the spherical harmonics and the contiguous
function relations mentioned previously. These results
complete the definitions of Ef}’ and H." [(60) and (61)].
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As mentioned at the beginning of this section, the
incident field is a plane wave propagating along the
negative z axis with its electric field polarized along
the positive x axis. Explicitly,

Ei = a7, Hi= —a,Ye s,  (121)
The scattered fields E® and H® satisfy (77)-(79) and
are related to e and h by (88). To determine the co-
efficients in the expansions of e and h [Eq. (99)], it is

necessary first to determine the functions f, and g,
[(100) and (101)]. With the incident field (121),

f(R) = 3(:-'31 v f R,-a,(1 + cos6)"N'"(R,|R) ds,
n! S (12)
g, (R) = ("‘f)" L (1 + cosB)"R, x a, - HY(R, | R) ds.
" (123)

Expressions for N' and H!" have been given pre-
viously. Combining all these results in (102)-(105), the
first few terms in the expansions of e and h, after
laborious but straightforward calculation, are found
to be

e,(R) = a®V[Pi(cos 6) cos ¢/R?]
= (a®/R®)(R2 sin 6 cos ¢
— B cos Bcos ¢ + ¢ sin ¢),
ho(R) = 3Ya*V[Pj(cos 0) sin ¢/R*]
= (Ya*/R®)(R sin 6 sin ¢

— 84 cos sin ¢ — b} cos ¢),
(@*/RH[—R2 sin 6 cos ¢
+ 81 + cos 8) cos ¢ — (1 + } cos ) sin ¢]
— 1a%V[PX(cos 0) cos $(1/R?)], (126)
(Ya®/R®»[—R sin 0 sin ¢

+ 81 + L cos0)sin ¢ + b} + cos ) cos $]

— 1Y a®V[PY(cos 8) sin ¢(1/R)], 127

(aS/R)[—-OG + cos 8) cos ¢
+ &1 + } cos 0) sin $)
+ (a®/R)[R(—2 sin 6 + § sin 26) cos ¢
+ 8(:% cos 8 — } cos 20) cos ¢
+ d(—1%5 + }cos 8 + & cos 20) sin ¢}
+ 25a"V[Py(cos 6) cos $(1/RM],
—(Ya®/R)[6(1 + % cos B) sin ¢
+ & + cos 8) cos $)
+ (Ya*/R)H[R(E sin 6 + } sin 26) sin
+ 8(—1% cos 0 — % cos 20) sin ¢
+ $(—1%5 — $ cos 6§ — 1 cos 26) cos ¢]
+ &5 Ya"V[P(cos 6) sin ¢(1/RY],

(124)

(125)
e(R) =

hl(R) =

&R) =

(128)
hz(R) =

(129)
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es(R) = (a®/R)[R(E sin 6 — } sin 26) cos ¢
+ 8(& — & cos 6 + 1 cos 20) cos ¢
+ &(3 — ¥4 cos 6 — % cos 26) sin ¢]
— 2a%V[Pj(cos 0) cos ¢(1/RD)]
+ (a’/RY[R(—5 sin 0
— 35 sin 20 — § sin 36) cos ¢
(3% + 130 cos O
95 cos 20 + § cos 30) cos ¢
(—4's — Tiso cos b
5 cos 20 — 35 cos 30) sin ¢]
— 15ea”V[Py(cos 6) cos ¢(1/R%)].

+ 4+ +
.e.,'-'l D o

-~

L

(130)

The scattered fields themselves are

E'R) = e“‘R( i(ik)"en(k) + O(k“)), (13D

HR) = e,-m( i_o(ik)nhn(k) + O(ks)), (132)

which in the far field (R — o) become

E’(R) = (¢™F/kR){(ka)’[6(} + cos ) cos ¢
— &(1 + } cos 0) sin ¢] + O(k*)}
+ O(1/RY), (133)
H'(R) = (Y™ BIkR){(ka)’[6(1 + } cos 8) sin ¢
+ & (3+ cos 6) cos ] + O(K")}
+ O(1/R®). (134)

These two results are in agreement with the ones
obtained by Lord Rayleigh.

CONCLUSIONS

To summarize, the main result of the paper was the
derivation of coupled Fredholm integral equations
of the second kind for the electric and magnetic fields
scattered by a perfectly conducting surface when
immersed in an arbitrary incident field. These integral
equations are of such a form as to admit of solution
in a standard Neumann series when k, the wave-
number, is sufficiently small. The technique is the
electromagnetic analog of a recently developed
method of solving acoustic scattering problems.+15
Here two dyadic potential functions play the role that
the potential Green’s functions had in the scalar case.
The derivation and definition of these fundamental
dyadics constitutes a large part of the present work.

No proof of convergence of the iterative solution
of the integral equations has been given and this
remains as an important subject for future work.
Support for the conjecture that iteration does yield a
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sequence which converges to the correct result is
provided by the application of the method to the
specific problem of scattering by a sphere. Not only
are the correct first few terms obtained in the low-
frequency expansion of the scattered field, but also the
calculation of the fourth term was carried out without
the appearance of divergent integrals. This is signifi-
cant since Stevenson has pointed out that his special
method, as well as that of Tai,'” breaks down at the
fourth term.

Whenever the requisite potential problems can be
solved, the present method offers a direct means by
which the electromagnetic scattering problem can be
solved at low frequencies. The method is more system-
atic than the corresponding method of Stevenson
and produces expressions for the field directly which
are valid in both near and far zone. While some of the
calculations required in Stevenson’s approach are
eliminated, those remaining are by no means trivial.
The question of whether the present method can be
further simplified has importance from a practical
as well as an aesthetic point of view since tractability
of calculation, rather than availability of potential
solutions, has proven to be the real limitations of
Stevenson’s method. Central to this question is a
study of the fundamental dyadics in an attempt to
express them in simpler form. The example considered
in the present paper, ¢.g., Eq. (112), offers a hint of
the simplification possible. No general results are yet
available. Another open question is whether the
present method can be extended to include scattering
from dielectric bodies.
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APPENDIX A: DYADIC RELATIONSHIPS

The following dyadic relationships have been used
in this work.18

Multiplicative Relationships

a and b are vectors and A a dyadic:
(axby:-A=a-(bx A)= —b-(axA),
ax(bxA)=ba.-A)— A(a.b).

(A1)
(A2)
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Derived Relationships
| is the identity dyadic and ¢ a scalar function:

Ve(axA)=(Vxa)-A—a.(VxA), (A3)
V.(@b)=(V.a)b + a.Vb, (A4)

V x (ab) = (V x a)b — a x Vb, (A5)

V x (¢) =V x |, (A6)

V x V x (¢l) = VV¢ — V24, (A7)

APPENDIX B: EXPLICIT DETERMINATION
OF THE FUNDAMENTAL DYADICS

To properly take into account the singularity due
to the magnetic dipole source [(44)], in Eqgs. (55)-(59)
let

El) =V x (=I/dw [R — R')) + EQXR|R") (BI)

and
HO = YV x V x (=I/4n [R — R']) + HOR | R),
(B2)

where E) and HJ) are C%(V). Then (56) and (57)
imply

V x HY(R) = 0, ReV, (B3)
V x ENR) = ZHO([R), ReV. (B4)

The dyadic HYY' is the magnetostatic field due to three
orthogonal static magnetic dipoles, and its expression
in terms of potential functions follows the corre-
sponding treatment for a single dipole. Thus (B3)
implies that

e =

Yz V¢£2)1rA7 (BS)

and, taking the divergence of (B4), we conclude that

Vil =0, j=1,23. (B6)
Furthermore, the potential functions ¢‘°) are regular
at infinity in the sense of Kellogg. This follows from
examination of the low-frequency expansion of the
Stratton—Chu integral representation of the scattered

field [e.g., see Ref. 4a]. Substituting (B2) and (BS) in
the boundary condition on H!?’ [(59)] yields

l
V. xV -
YH, -V, x V, x ( 4n R, R'l)

3
~ Y38, V404, =0 (B)
j=1

W)

(B8)

or, with (A7),

2 ’ =i|:* v (_.
6n_, mj'(Ra | R) ans (ai a)
j=123.

J. S. ASVESTAS AND R. E. KLEINMAN

In terms of N “”(R | R’), the exterior potential Green’s
function for Neumann boundary condition on S
[see (62)-(64)], the potential functions ¢(°’ may be
expressed as

mi(R| R
= — f N“Y(R, | R)i (R, | R) ds

— 3, vamR R ( —l_)d
¢ l)an 4rR,—R|)“

=2,.V'N(R|R). (B9)
The fact that
V(l/IR, — R'|) = —V'(1/R, — R']) (B10)

was employed in deriving (B9) and will be used
frequently in succeeding calculations.
With (B5) and (B9), (B4) becomes

V x EL(R) = EIV#SL = -

VV'N(R | R').
(B11)

Stevenson®® has shown that the necessary and suffi-
cient conditions for the vector equations

V x E3)(R) = —V48Y), (B12)
to have a solution are
Vi =0, ReV, (B13)
and
f fi, - V, 6% ds = 0. (B14)
N ;

The first condition is satisfied by virtue of (B6), and
the second is satisfied since, with (BS),

f ﬁs ’ Vs¢£:;r ds
S

~ 1
=—-a,-V|# -V[———1d B
i, L ( 4"|RS_R,I) s (B15)

and, by the divergence theorem,

fﬁs-V,(— ——1——) ds=0, R'eV. (BI6)
s 47 |R, — R|

The complete solution of (B12) is

EL®) = - -V

T
x f( iR, | R) — NUU(R, | R')) 8, ds
8 IR, — R|

+ VG{IR | R).

(B17)
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The first term on the right is a particular solution of
(B12),%*20 where N\/} is an interior Neumann potential
function for S, i.e.,

VENG(R|R)=0, ReV,, R'eV, (B18)
f, - V,NO(R, | R) = 8, V8% (R, | R),
R,eS, R'eV. (B19)

This is a standard interior Neumann problem and has
a solution provided that

fsﬁs -V,NI(R,|R) ds = 0, (B20)
a condition guaranteed by (B14) and (B19). In fact,

with (B8) it is seen that the solution of this problem
is simply?!

NW(R|R) =4, V'(1/47 R — R')),
ReV,, R'eV. (B21)
Thus, with (B9),

EU(R) = — t @, V)W

(e) ’
x f NORRY 4 45 4+ V6O |R),

5 IR, — R|
(B22)

where N® is the exterior Neumann function [(62)-
(64)]. The second term on the right in (B22) or (B17)
is a solution of the homogeneous equation

VxED®R|IR)=0 (B23)

That G} are potential functions follows by taking the
divergence of (B22) and noting that Ei,},’ is the curl of
a vector [(58)] and hence divergence free. That G is
regular at infinity in the sense of Kellogg follows, as
with d)i,‘,’: , from an examination of the Stratton-Chu
integral representatlon of Ei,,‘} The behavior of G')
on § is determined from the boundary condition (59)
on E!Y. Hence G are standard exterior Dirichlet

potential functions, i.e.,
VEGEIR|R) =0, R, R' €V,
fi x VG2)R|R")

(B24)

= —l-ﬁxV
i
A (e) '
x ( Y 4@,V N_&R_)ﬁsds),
IR — R’| S IR, — R|

ReS, R'eV, (B25)

GY)(R | R') regular at infinity.
To completely determine G}, the additional
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[ v ryds =0, j=1,23 ®29)

is employed. This arises from the representation (B22),
the fact that E:,},’r is expressible as a curl [(58)], and
Stokes’ theorem.

In summary

EV(R|R)

v (- =)
47 |R — R'|

3

+z(—-_-(a VOV x

=1

(e) ’
NORR) 5 g
S R, — R
+ VGIIR | R’)) a;, (B27)
where N is an exterior Neumann potential function

for S [(62)-(64)] and G} are exterior Dirichlet
potential functions for S [(B24)—(BZ6)].

The Dyadic H{!) in Terms of Potential Functions

The procedure for finding H{" is similar except that
the singularity enters in a different way hence different
potential functions arise. Thus, let

HO®R [R) =V x (=1/4= R — R) + H)R|R),

(B28)
with (A7) and (51) and the fact that

Vi(~1/47 R — R'|) = (R | R"),
V x HYR|R)
= —VV(—1/47 |R — R')) — YE,(R|R’). (B30)
Taking the curl of (B30) and using (48) yields
VxVxHY)R|R) =0, (B31)

which is the desired result (17). Furthermore, (48)
implies that

(B29)

EV(R| R) = —Z3 VYR | R)K,. (B32)

which in combination with the divergence of (B30)
yields

ﬁ[V?¢‘°’(R|R')]a =VSR|R) (B33)
or =
Vo (R|R) =3,-VSR|R), j=1,2,3. (B34)

From (53) and (B32), the boundary condition satisfied
by these scalar functions is

fixVPR|R)=0, ReS, j=1,2,3, (B35)
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which, by Stokes’ theorem for scalar fields, implies
that </>‘°’ is a constant on § with respect to R though
it may still depend on R’. By (B34), ¢} may be
written in the form

QR [R) =12,-V(—1/4n |R — R'|) + ¢(R|R),
(B36)
where

VIR |R) =0, (B37)

in which case the boundary condition reads

IR, | R’ ;+V(—1/47 R, — [R) + C,;,

R,eS, R'eV, (B38)

where C,; is the constant value of ¢ on S. The
functions ¢;'(R |R’) are regular at infinity in the
sense of Kellogg by the same argument as before
(examination of the Stratton—Chu integral representa-
tion of E{}) and hence may be expressed everywhere in
V in terms of values on S by the formula

SR | R) = [ 490, R) 2 R, [R ds, (B9)
where G’ is the exterior potential Green’s function
for Dirichlet boundary condition on S [(70)-(72)].
Substitution of (B38) in (B39) gives

g (R R)

R m—
s\ 4w |R,— R’[/dn

+ ce,.f — G(R,|R') ds
s on,

G'(R,| R) ds

= —(a;-V)G(R|R)

+C,; f 9 G“(R,|R’) ds. (B40)
s 0n,

The conductor potential U(R) is defined as an ex-
terior potential function, regular at infinity and taking
on the value 1 on S (Ref. 13, p. 330). Expressing the
conductor potential in terms of the Dirichlet Green’s
function yields

U(R) =L a—i— G'“(R,| R) ds. (B41)

Thus (B40) may be rewritten
$OR|R) = —G, - VIGYR | R) + C,,UR).
(B42)

This equation, with (B36) and (70), leads to an expres-

sion for the full potential ¢y :

$Q = —(@, - V)GOR|R) + C,UR). (B43)

J. S. ASVESTAS AND R, E. KLEINMAN

The constants C,; are determined from the condition

f fi, - V. (R, | R) ds = 0, (B44)
which is a consequence of (51), (B32), and Stokes’
theorem. It is a mathematical statement of the
physical fact that the total induced static charge in
the perfectly conducting surface must be zero.
Substitution of (B43) in this expression gives

C. =2,V U(R)(f 9 U(R)ds)1 (B45)

The electrostatic capacity C of the surface S is
defined (Ref. 13, p. 330) as

_i [ 2
o L an, U(R,) ds, (B46)
hence
C,; = 2, - VUR)/4nC (B47)
and
W = (& V)[G(R|R) — URUR)/4=C],
(B48)
W= —@, V)G |R) — UR)UR)/4rC].
(B49)

The electric field dyadic (B32) can then be written
E(R|R)

_z z v((aj VIGR|R) — 4,V gg:;)__lcf(m) ;i

= ZVV’(G“’(R |R) ~ M@). (B50)

47C

This is the electric field due to three orthogonally
crossed static electric dipoles with moments defined
by (45).

The dyadic H{ can now be found. Substltutmg
(B50) in (B30) and making use of the definition in
(70)-(72) of G'* yields

V x HY= —VV'[G(R | R') — UR)U(R')/47C].

(B51)
This dyadic equation can be broken into the three
vector equations

VxHY=—@4,.V)
x VIG(R | R) — UR)UR)/4=C],

.j = 1’ 2, 3"(B52)
or, with (B49),

VxHY=V$?, j=1,2,3.  (BS3)
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The necessary and sufficient conditions for these
equations to have solutions, (B13) and (Bl4), are

satisfied by virtue of (B37), (B44), and (B16). The
complete solution of (B53) is
HR | R)
o) N _ W '
= i V xf (¢eir(Rs | R) Nci;(Rs | R )) ﬁs dS
47 8 IR, — R|

+ VNYR|R). (B54)

Just as in the corresponding solution of the equation
for E,(,,l," [(B17)], the first term on the right is a partic-
ular solution of (B53), and the second is a solution
of the homogeneous equation

VxHYR|R)=0, RReV. (B5S)

The functions Néﬁ-’r(Rs | R’) that appear in (B54) are
interior potential functions satisfying the boundary
condition

f,-VNY (R, |R)
= #,- V,4,5(R, | R)
= —f,-V, V)
x [G(R, | R") — UR,)U(R')/4xC],
R,eS, R'eV. (B36)

It is convenient to introduce an associated interior
Neumann function N{’(R | R’) such that

VINO(R|R)=0, ReV,, R'eV, (B57)
fi, - V.N(R, | R")
= —f,- V,[GR,|R) — UR,)UR)/47C]. (B58)
The definitions of U(R) [(B41)] and C [(B46)] suffice
to show that

f fi, - V,NO(R, | R) ds = 0, (B59)
S

which is a necessary condition for the existence of
N, Since 1/47 |R — R’| is a solution of (B57), the
functions N;;) may be written as

NOR|R)=13,-V[N?R|R) — 1/47 |R — R'[];
(B60)

hence, the first integral on the right in (B54) can be
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written as
V x f( SR, R) — NOR, | R'))ﬁ is
s IR, — R|
=V x f @;-V)
8

X (—Gie’(Rs |R) +

U(RS)U(RI) _ N(t')(R I RI)
47C e

1 fi
+ - ) *— ds
47 R, — R'|/|R, — R|
(1) I
NOR [R5 g,

(B61)
IR, — R|

= -V xfﬁ,.-V’
s

This last expression was obtained through the bound-
ary conditions on G' and U and using the fact that
Gauss’ theorem for scalar fields implies

i}
fo 2
‘Sle—RI

This fact also indicates that, while (B57)-(B59) specify
NP (R|R’) only to within an arbitrary function of R’,
this arbitrary function does not contribute to (B61).
Thus, (B54) may be written

ds =0, (B62)

1

(i) ’
HY = = (3, V)V x N'R, [ R)
ko

)ﬁsds
S IR, — R

ejr

+ VNY®R|R). (B63)

The functions N'2(R l R’) are exterior potential

functions determined so that the boundary condition

(53) on H!" will be satisfied. Thus,
VINY@R|R)=0, R, R eV, (B64)

N{)(R| R’) regular at infinity in the sense of Kellogg,
and

ii- VNO(R | R)

=ﬁ-Vx(—-a—”——+—A..v'
R R TV
(¢) '
xffie_(l‘ﬂi)ﬁsds),
SIRS—Rl

ReS, R'eV. (B65)

In terms of N‘?, the Green’s function for the Neumann
problem, we have

NO®R|R) = —LN‘”(Rs | R4, - V,N)(R, | R) ds.
(B66)
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In summary
H R | R)

Iy
47 R — R
s ) '
+z(_i(§j-V’)V fo_ew,ﬁsds
j=1 47 le~~_ Rl

+ UNGRIR)Jiy. (B6)

where N{? is an interior Neumann potential function
[(B57)-(B59)] and N.2' are exterior Neumann poten-
tial functions [(B64) and (B65)].

APPENDIX C: PROOF OF THEOREM 3

Substitution of (91)-(94) in (89) and (90) leads to
the following equations®?:

ik[Zh(R") — R’ x e(R")]
= —sz(e+Zf{ x h) - EQ gy
vV

+ ikf [Vx(Rxe)]-EYdv
.

+f(ﬁ x e)-(V x EY)dS (CI)
8

and

—ik[Ye(R') + R’ x h(R")]

=—k2f(h—Y1‘txe)-Hg”dV
vV
+ikf[Vx(ﬁxh)].H‘;’dV
14

— ikf [ x(Ye+ R xh)]-HP4S. (C2)
S

By the identity (A3) the second volume integral of
(C1) can be written in the following form:

f[Vx(f{xe)]-Ei,{’dV
v

=JV- (R x e) x EXN]dV
v

+f(l"2 x e)+(Vx EMYdV. (C3)
v

By (B1) and (Bl1) and application of the divergence
theorem (24) to the first integral on the right, (C3)
becomes

f[Vx(f{xe)]oEﬁ,l,’dV
v

= i-[(R xe) x EXMdS
S+8°

—f(fz x ) . VV'N O 4qV. (C4)
| 4
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By the boundary condition fi x E{Y) = 0 and (Al),
the integral over § in (C4) vanishes. Application of
(A4) to the last integral results in
f[V x (R x e)1-EY dv
12
=f fi-[(Rxe)xED]ds
5
——fV - [(R x e)V'N'®] dp
v
+ f V.(R x eV N dv, (C5)
v
which can be further written as
f[Vx(R x e)] - EY dv
v
=f A-[(R xe)x ES — (R x VN ds
5
+ f R [(f x e)V'N ds
8
— ikf R.(Zh — R x e)V'N“ dv, (C6)
v
by means of the divergence theorem, standard vector
identities, and :(91). The integral over S’ can be
evaluated in tl}e standard manner (see Sec. II),the
result being —R’ x e(R"); thus Eq. (C6) becomes
f[V x (R xe)] -EXdy
v
= —R, x e(R") +f R [(7 x VN ds
8
- ika (R -h)V'N® do. (e1)]
v

Substitution of this expression in (Cl) yields the
result

ikZW(R') = —szy(e + ZR x h) - EY dp
+ ksz'fV(R -h)N®@ dv
+ ik L R [(f x V' N ds
+L(ﬁ x e)-V x EP ds, (C8)
Following the same treatment used in deriving (85)

and using (92) rather than Maxwell’s equations, we
can write the last integral of the above expression as

f(ﬁx e)-V x ENds
s

= —ika (f - V'N gs
s

- ikfsﬁ - [(A x eV'N®]ds. (C9)
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With this substitution (C8) becomes
h(R") = ikf(Ye +Rxh) -EXdv
14
— ikV’ J (R -h)N'® dp
-

-V f (A -h)N'® ds, (C10)
S

which is the desired result.

The second volume integral in (C2) can be modified
in an analogous manner as the corresponding integral
in (C1) to give

f {V x [R x h(R)]} - HYR | R) dv

v
= —R’' x (R")

+ f , - {[R, x h(R)] x HE(R, | R} ds
S

- f A- R, x h(R,)]
S

x V' (G‘“’(Rsl R) — M) ds

4nC
+ ikYV’f R-e(R)
vV

UR)U(R’)
4nC

Since G'’(R, | R") = 0 and U(R,) = 1, this becomes

X (G“’(R [R) — ) dv. (C11)

f{v x [R x h]}« H® do
V

= —R’ x h(R) +f fi, - [(R, x h) x HM] ds
S

V'U(R’) R
—— | f,-(R, x h)ds
+ 47C s ( )
+ ikYV'fR-e(G"” - Ml—{—)) dv. (C12)
v 4nC

With the divergence theorem and (92), this can be
written as

f[v x (R x h)}- HY dy
14

= —R’ x h(R") +f fi, - [(R, x h) x HV] ds
s

SCATTERING 811
+ ikY—U-(-R—)f YR e(R) dv
4=C Jv
ke [ oo - PRI 4,y
14 47C

Substitution of this expression in (C2) yields the
desired result

e(R) = ——ikf (Zh — R x e)- HY dv
v

k[ R LR VBB,

+f(ﬁs x e)« HY ds. (C14)
s
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A functional integral representation for the space-time Hopf characteristic functional is derived from
the probability theory for a statistical ensemble of velocity fields that satisfy the Navier-Stokes equation
for boundary-free incompressible fluid flow. The functional integral representation involves a pair of
real vector field integration variables denoted by u and v, and the evaluation of the integral is performed
in two steps. First, the integration over the field variable u is effected exactly in the general case by
applying methods of explicit functional integration. Second, the resulting functional integral over the field
variable v is reduced to a form amenable to specialized analysis by applying a suitable transformation
of the integration field variable v — z. Specializing to mathematically defined *“C-dominant turbulence,”
the final functional integration over the field variable z is effected exactly and yields a characteristic func-
tional of Gaussian form. The two-point velocity correlation tensor for C-dominant turbulence is then

obtained from the characteristic functional.

I. INTRODUCTION

All modern approaches to the theory of incom-
pressible fluid turbulence take the statistical ensemble
hypothesis of Taylor'? as a fundamental postulate
and have the common objective of computing physi-
cally significant velocity correlation tensors. However,
there have emerged two essentially different lines of
research which aim at the formulation and solution
of a useful statistical theory for incompressible fluid
turbulence.

The first line of research has its genesis in the work
of Chandrasekhar,? the original author to apply an
ad hoc closure approximation scheme to the infinite
hierarchy of correlation tensor equations and to
obtain a nonlinear'integro~differential equation for
the two-point velocity correlation tensor. Authors
have followed Chandrasekhar with more sophisticated
ad hoc closure approximation schemes which lead
to sets of 'coupled integro—differential equations for
velocity correlation tensors. To what extent such ad
hoc closure approximation schemes are meaningful
in the context of the exact complete theory has been
investigated by Wyld.* The detailed analysis of Wyld
makes it evident that what is left out is not necessarily
small compared to what is included by the various
ad hoc closure approximation schemes.

The second line of research has its genesis in the
work of Hopf,® the original author to derive a func-
tional differential equation for the dynamical evolution
of the probability distribution over the statistical
ensemble of velocity fields and to obtain a rigorous
(closed and complete) mathematical formulation, free
of any ad hoc statistical approximation. Authors have
followed Hopf with partially successful attempts®?
to solve the functional differential equation and to
develop the more tractable space—time version of the
probability theory.® There is no physical deficiency in

the Hopf formulation, but mathematical difficulties
have been associated with this second line of research
owing to the underdeveloped state of functional
differential equation theory.

The present paper reports recent mathematical
results that advance the second line of research. We
have obtained a functional integral representation
for the general solution to the Hopf functional differ-
ential equation in the space-time version of the theory,
and have shown that this integral representation can
be evaluated by applying methods of functional cal-
culus.® Details of this work are given here.

The organization of the paper is as follows. In
Sec. IT we fix notation and recast the Navier-Stokes
equation for boundary-free incompressible fluid flow
into the form of the integral equation (15) which
incorporates a generically prescribed initial velocity
field. The latter Navier-Stokes integral equation
plays a central role in Sec. III, where we develop a
general theory for space-time probability distributions
and characteristic functionals associated with a
statistical ensemble of velocity fields. The functional
integral representation (49) for the space-time
characteristic functional is derived from the proba-
bility theory. In Sec. IV we perform a general partial
evaluation of the functional integral (49), the integra-
tion over the field variable u in (49) being effected
exactly in the general case by applying methods of
explicit functional integration. The resulting func-
tional integral over the field variable v is reduced to
a form amenable to specialized analysis by applying
a suitable transformation of the integration field
variable v— z, and we arrive at expression (69) for
the characteristic functional. In Sec. V we complete
the evaluation .of the characteristic functional for the
special case of “C-dominant turbulence,” defined by
the mathematical condition (71). The final functional
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integration over the field variable z is effected exactly
and yields the characteristic functional (79), which
manifests a Gaussian form. We then obtain the two-
point velocity correlation tensor (89) for C-dominant
turbulence with the forms (81) and (82) for the
disposable physical quantities. In the Appendix we
derive the general expression (AS) for the two-point
velocity correlation tensor associated with weak
turbulence.

1I. NAVIER-STOKES EQUATION FOR
BOUNDARY-FREE FLOW

We consider an unbounded spatial domain with
Cartesian coordinates x = (x;, X,, X3) and a semi-
infinite temporal domain with the time coordinate
t > 0. The pressure term can be eliminated from the
Navier-Stokes equation for the free flow of an in-
compressible fluid, and we have the governing
dynamical law

£+ (u-Va)* =0, §))

with

d
£, =— —»V° 2
e =57 (2

and the velocity field

u= (ul(x, t)’ u2(x9 t)9 ua(x, t))

satisfying the subsidiary condition that expresses
incompressibility of the fluid,

V.u=0. 3)

In Eq. (1), “tr” denotes the transverse (solenoidal)
part of the inertial term, the transverse part of a
generic vector field w = w(x, ) being defined as

W= wx, )" =w— V[VEV.w)]

=w(x, 1) + szj(—y’—tl dy.

4w |x —y| @

Because we have
V. [(u-V)ul* =0,

the subsidiary condition (3) is compatible with the
integro-differential dynamical equation (1) for all
t > 0. Assuming that the velocity field is prescribed
att =0,

u(x, 0) = & = a(x)

)

with & solenoidal,

V.i=0, (6)

it is convenient to recast (1) in the form of an integral
equation which incorporates the initial data (5),

(1
(%, 1) — f f GragX — ¥, 1 — sHusly, Yup(y, ) ds
= 4,x, 1), (7)
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where Greek subscript indices (referring to the
Cartesian spatial axes) run 1, 2, 3 and the summation
convention applies to repeated indices. In (7) we have
introduced the quantities

d(x,t) = (4mvt)} f 4,(y) exp (—|x — y|¥dvt)d®y

g f a,x + 20 ™ B2 ®)
and
180G, (x,1) 090G, 4(x, )
Gup(x, 1) = — -{—2 "ﬂ’) 9
w1 2( 0xg ox, ©)
in which
2
Gupl, 1) = 8,6(r, 1) + THED 4
0x,0%;
G(r, ) = (dmvty Hexp (—r*/dw)], for >0,
=0, for 1 <0,
(1
H(r,t) = =V7G(r,1) = mf G(s, t) ds
r Jo
© 2 n
= ; 7 (=r'/dv) , for >0,
4rtnt ont2n + 1)
=0, for t <0,
(12)

where r = |x|. To prove that (7) is equivalent to Eq.
(1) subject to (5), we note that the Green’s function
(11) satisfies the inhomogeneous diffusion equation

(13)

while the vector field (8), solenoidal as a consequence
of (6), is the solution to the homogeneous diffusion
equation

£.G(r, ) = 8(x)5(1),

£ =0 (14)

subject to the initial value @i(x, 0) = @i(x); hence, we
obtain Eq. (1) by applying the differential operator (2)
to Eq. (7).

There are two important notational simplifications
that facilitate analysis based on Eq. (7). First, we
abbreviate the space-time coordinates by x = (x, 1)
and the space-time infinitesimal volume element by
dx = dx, dx, dx; dt, so that Eq. (7) takes the form

u,(x) — f Gras(* — VuNug(y) dy = 2,(x), (15)

with the space-time integral understood to be over all
y and over the semi-infinite interval for the time
component of y, the three-index Green’s function (9)
vanishing for negative values of the time argument.
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Second, we may express Eq. (7) or (15) symbolically
as

u— G:uu = i,

(16)
where the colon denotes a double contraction on
tensor indices together with the associated integration
over space-time in (15). The symbolic notation in (16)
makes it possible to display many of the equations of
the theory in a transparent form. For example, the
iteration solution series to Eq. (7) or (15) is exhibited
neatly as

u =i + G:iili + 2G:i{(G: i)
+ 4G &(G:U(G: &) + G:(G:d)(G:iid)
+ (terms of higher order in @),

(17)

a formal solution which is valid if the u-to-@ corre-
spondence provided by (15) is one-to-one and useful
if the quantity G:@d is small compared to ii for all x
and all ¢ > 0, as for the velocity fields in a “weak
turbulence” statistical ensemble (see Appendix A).

III. PROBABILITY DISTRIBUTIONS AND
CHARACTERISTIC FUNCTIONALS

Underlying the mathematical description of incom-
pressible fluid turbulence is the postulate that a statis-
tical ensemble of velocity fields can be evoked for the
theoretical prediction of observable averages (expec-
tation values) of velocity field components. The
initial velocity fields (5) are prescribed statistically in
terms of a probability distribution P[], a non-
negative real functional of @ = {i(x) concentrated on
solenoidal fields in accordance with (6), so that

(V- @)Pg[d] =0

for any arbitrary real vector field @ = @(x). With D(&)
denoting a displacement-invariant infinitesimal volume
element in the @ function space, the probability of
finding the initial velocity field with the specific form
it = @i(x) is given by Py[li]D(li). A heuristic way of
expressing the infinitesimal volume element is

D(#) = (const) TT [da(x) dity(x) diy(x)],
all x
but the property of displacement invariance
D(& + w) = D(d),

for any w = w(x) independent of d, is adequate to
fix- D(@) in practical computations to within a con-
stant numerical prefactor which is subsequently
determined by the probability normalization condition

f P,[a]D(8) = 1. (18)
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Rigorous mathematical meaning obtains for the left
side of (18) as a functional integral over all & with
displacement-invariant measure.’® Likewise, rigorous
mathematical meaning obtains for the generic
expectation value formula

(Fla)) = f F8]P,[a]D(d) (19)

for a generic functional F[a].

The probability distribution P,[ii] for the statistical
ensemble of initial velocity fields at r = 0 induces a
probability distribution for the statistical ensemble of
vector fields (8) in space-time, because ii = ii(x, ) =
ii(x) and @ = @(x) are related generically in a one-to-
one fashion by (8). To compute the expectation value
of an arbitrary functional of &, we simply evoke (8)
and formula (19). Thus, for homogeneous turbulence
the probability distribution P,[ii] is invariant under
translations of space x —x + a, and we find the
two-point correlation tensor

Sulx’, x7) = (@,(x)a,(x")

o2
= 1T—3( -— 6uvvi’)
0x,0x,

i1}

— X"+ 2nt) I = 207 RN

X e—lh']’—l)\"lgdaz IdS}’”

X J‘h(x’

’ ” —‘g' az 2
= [mt + 1)] (ax,:ax; - a,,vvx,)
x f h(x' — X" + y) exp [~ [y|¥4s(t’ + )%,

(20)
if the two-point correlation tensor at ¢’ =¢" = 0 is
prescribed as

(XY, (X)) = ( 4

ax’ax’ \% ,,v)h(x x"). (21)
nY Ay

It should be noted that the real scalar function A(x)
in (20) and (21) is required to be nonnegative convex,

since we have

< f 600 f () 2>
= f (B BEN ) f ()"
=2 f b — x) YOI o

dx'd*x" > 0

ox, Ox) -
for all arbitrary real scalar functions f (x) that vanish
at spatial infinity. Indirectly then,via (8) and (19),
the space-time vector fields ii are endowed with a
probability distribution P[], a nonnegative real
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functional of @i = #i(x) concentrated on solenoidal
fields satisfying the homogeneous diffusion equation
(14),
(V-i(x)P[i] =0 and [LE)IP[E] =0
for any arbitrary real vector field & = ii(x). The
probability of finding the vector field (8) with the
specific form @ = @(x, t) is given by [~ [@]D (&), where
D(i) denotes a displacement-invariant infinitesimal
volume element in the function space of the &’s. In
heuristic symbolic notation, we have
D(i) = (const) [T [di(x) dily(x) dity(x)]
all x

with D(@ + w) = D(ii) for any w = w(x) independent
of ii, and the probability normalization condition is

[Pao@ =1, (22)
a functional integral over all & From the one-to-one

correspondence provided by (8),it follows that
P [d]D(@) = P[a]D(d) (23)

for a pair of fields related by (8). Hence, the expecta-
tion value of an arbitrary functional of i can be com-
puted by evoking (8) and (19), or, alternatively, by
using the generic formula

(Fla]) = f Fla]P [a]D(3).

In particular, we have the characteristic functional
associated with [P [ii] given by

Oy = <exp i f v(x) - fi(x) dx>

- f (exp i f ¥(x) - ii(x) dx) BlaD@), (25)

(24)

where the ordinary space-time integration in the
exponential is understood to be over all x and all
t 2 0. The characteristic functional (25) is therefore
a functional Fourier transform of the probability
distribution fAP[ii]. Expectation values (24) are ex-
tracted from (25) by functional differentiation,

(Fi]) = (F[—id[0v]®[v]),—o. (26)
Thus, for example, the two-point correlation tensor
(20) is obtained from ®[v] as
2 d[v]
6v,,(x'>6vv(x">)v=o’

Because the vector fields @ = ii(x) that make a finite
contribution to the functional integral (25) satisfy (14)
and are solenoidal, we have the characteristic func-

S, (X', x") = —( @7
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tional (25) satisfying the equations
¢ sd[v] _

N 0v,(x) =0, (28)
. od[v] _ 29)
0x, 0v,(x)

In addition to being a solution to Eqs. (28) and (29),
the characteristic functional (25) must satisfy certain
holonomic and nonholonomic conditions, such as

d01=1, |dp) <1, OW* =d[—v], etc,

which stem from the fact that ﬂAD[fi] is real, non-
negative, and normalized with respect to D(ii)
according to (22). Corresponding to a Gaussian
probability distribution, we have a characteristic
functional of the form

dfv] = exp —%J‘fv,(x')Sa,,(x', x")og(x") dx’ dx”,
(30)

in which S,,(x’, x") = §,,(x", x') is a real symmetric
tensor. Since the functional derivative of (30) is

od
E([xl; = f 8,505 )og() dx'dvl, (1)

it follows that (28) and (29) are satisfied if

aS o l’ " a v I’ "
,,(x’x)=0= S,(x', x") (32)
ox, ox,

and
ﬁx’Suv(x" x)=0= t:c"sﬂv(x,r x"). (33)

The solenoidal property of S,,(x’, x") displayed by
(32) shows that the characteristic functional (30)
depends only on the transverse part of v, ®[y] =
®(v'™] for all v, while (33) shows that d[v + Liw] =
®[v] for all w = w(x) with £} denoting the formal
adjoint of the operator (2). For homogeneous
turbulence the S,,(x', x") in (30) equals the two-
point correlation tensor (20) by virtue of (27), and it
is readily verified that the final member in (20) satisfies
Egs. (32) and (33). Moreover, S,,(x’, x") is then a
positive-definite matrix kernel with respect to solenoi-
dal v (= v¥) in (30), because h(x) is a nonnegative
convex real function in (20).

The probability distribution P,[i] for the statistical
ensemble of initial velocity fields at ¢ = 0 also induces
a probability distribution for the statistical ensemble
of physical velocity fields u = u(x) in space-time,
P[u], a probability distribution concentrated on
solenoidal fields satisfying the Navier-Stokes equation

1,
(V-wP[u]=0 and {L.u+ [(u:V)u]"}P[u] =0
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for any arbitrary real vector field u = u(x). By
definition, the probability of finding the velocity field
with the specific form u = u(x) is P [u]D(u). If for a
prescribed i = @(x) a unique u = u(x) exists as a
solution to Eq. (1) for all £ > 0, or as a solution to
Eq. (15) for all r > O with ii = @(x) prescribed, then
the correspondence between u and @ is one-to-one,
and it follows that the probability P [u]D(u) equals
the probability P [3]D(#) for a pair of fields related
by (15). The mathematical theory for the Navier-
Stokes initial value problem! does indeed suggest
existence of a unique solution for all 7 > 0 if the
initial velocity field at ¢ =0 is suitably smooth.
However, the precise form of a smoothness condition
on the initial velocity field & = @(x) for existence of a
unique solution u = u(x) for all # > 0 has not been
established, and therefore it is unknown whether a
unique solution is always associated with an initial
velocity field realizable in nature. Taking into account
the possibility of nonuniqueness, which would
feature a local breakdown of regularity at a finite
value of ¢ and bifurcation of certain solutions to the
Navier—Stokes initial value problem, we write

eA[“]”D[u]‘D(u) = ﬂb[ﬁ]ﬂ)(ﬁ), (34)

where A[u] is a real functional of u that vanishes
identically if and only if the u-to-@i correspondence
provided by (15) is one-to-one. More generally, the
functional 4 {u] must be indefinite in sign as u ranges
over the statistical ensemble of velocity fields in order
to admit the normalization condition

f Plu]D(u) = 1 35)

with IP[ii] normalized according to (22) and requiring

f AP Pu]D(u) = (400 = 1. (36)
The displacement-invariant infinitesimal volume ele-
ments in (34) are related by a function-space deter-

minant
D(ii) = [det(d71,(x")/ou,(x")N]D(w),

in which [det (8i,(x")/0u,(x"))] is defined as the
product of all eigenvalues of the matrix kernel

(37

8, (x")/u,(x") = 6,,0(x" — x")
— 2G0(x" — X Ju (x"). (38)

Since the three-index Green’s function (9) vanishes
if the time-argument is not positive, we have

G’ = x") =0 for <L, 39)
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and the function-space determinant of the matrix
kernel (38) equals unity, as shown in convenient
symbolic notation by the elementary calculation

det (0#,(x")/ du,(x"))
=det (1 — 2G -u)
= det {exp [In (1 — 2G - )]}
= exp {sp [In (1 — 2G - u)]}
= exp {sp [—2G - u — 2(G - u)? + O((G - w)?)]}
=1—35p(G-u)+ 2[sp (G-w]* — 2 sp (G-u)?
+ [higher order terms in sp (G - u),

sp(G-w?sp(G-up,---]=1.(40)

In (40), “sp’” denotes the function-space spur (trace)
of a matrix kernel, obtained by contracting the indices,
setting the space-time coordinate arguments equal,
and integrating over the space-time region (all x and
all £ > 0); thus, for example, we have

p (G- u) = f G, a0, (x) dx = 0, (41)

and
(G - u)t = f Gonal — X"
X Gup(x” — XNug(x’y dx’ dx" = 0. (42)

Hence, (37) reduces to an equality of the infinitesimal
volume elements, D(u) = D(d), and (34) becomes

A Pu] = [}5[6] = [|5[u — G:uu}
= f 8[i — u + G:wulP[E]D(D), (43)

where J[w] is the d-functional with respect to the
infinitesimal volume element D(w),

owl=0 for w=w(x)z0, (44)

f S[wID(wW) = 1. (45)
The functional integration is over all real vector fields
in (43), (45), and in the functional integral representa-
tion of the d-functional

o[w] = (const)J (exp ifv(x) + w(x) dx) D(v). (46)

In (46) and subsequent equations, it is understood
that ordinary space-time integrations with the infini-
tesimal volume element dx = dx, dx, dx; dt are over
all x and all ¢ > 0. By putting (46) into the final
member of (43) and recalling definition (25), we
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obtain
[u] = (const)
X e“‘[“]](exp ifv(x)'(—u + G:uu)(x) dx)
x O[VID(W). (¢71

It follows from (47) that the characteristic functional
associated with P [u],

Ply] = \exp i|y(x)-u(x)dx /

= f (exp i f ¥(x) - u(x) dx) [u]D(u), (48)

can be expressed as

Dfy] =ff[exp (if{[y(x) — v(x)] - u(x)

+ ¥(x) - (G:uu)(x)} dx — A[u]):l
x O[V]D(W)D(v), (49)

where a numerical prefactor constant has been
absorbed into the product of the displacement-
invariant infinitesimal volume elements with the

over-all normalization of (49) fixed by (35) as
o[0] = 1. (50)

Because the probability distribution P[u] is con-
centrated on solutions to Egs. (1) and (3), the charac-
teristic functional ®@[y] must satisfy the Hopf equation

3*P[y]

tr
£, SOhyl _ i(i ) = (51)
Oyu(x)  \9x, 6y (x)dy,(x)
subject to the subsidiary condition
9 ool _, (52)
0%, 8y,(x)

That the functional integral representation of @[y]
given by (49) satisfies Eq. (51) is verified by computa-
tion of the functional derivatives and an application
of the functional integration by parts lemma'?; that
(49) satisfies (52) (or equivalently, that the charac-
teristic functional depends only on the transverse part
of y, so that ®[y] = ®[y*] for all y) is verified by
noting the solenoidal quality of (9),

0G 0p(x, 1) _

o, 0, (53)

the property implied by (29) ®[v] = ®[v*] for all v,
and the displacement-invariance of the infinitesimal
volume element D(v). Since the two-point velocity
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correlation tensor
R, (%', x") = (u,(x"u,(x"))
= f 1, (5"t (x") P [u]D(u)

B (6 yu((z:'(;)alﬁ(x”))ho

and all other expectation values

(54)

(Fu]) = f Flu]P[u]D(u) = (F[— i8/6y10[y]y_o
(55)

are obtainable immediately from a closed-form
expression for the characteristic functional (48), the
closed-form evaluation of the functional integral
representation (49) enables one to predict all observ-
able averages that are associated with a turbulent
fluid velocity field.

IV. EVALUATION OF THE CHARACTERISTIC
FUNCTIONAL INTEGRAL REPRESENTATION

By introducing the symmetric tensor field
M 4(x) Efvﬂ(x’)G,mﬁ(x’ — x)dx’
_1 f(avz‘(x') L )
2 0xp

0x,
the functional integral representation (49) takes the
form

oiy) = | [exe t [0 = seomo

+ M, p(X)u(X)ug(x)} dx — A[u]):l
x OV]Dw)Dw). (57)

)G(x’ —x)dx’', (56)

A study of the Navier—Stokes initial value problem?!!
suggests that the generic form

Afu] = f Copusup(x) dx —Ink  (58)

is a plausible approximation for A[u] in (57), where
Cop(x) is a real symmetric matrix field that either
vanishes identically (in case the u-to-ii correspondence
provided by (15) is one-to-one) or is positive-definite
for all x, and k (> 1) is a real constant prescribed by
(36) as

k= <exp f C o ()% dx>. (59)

With A[u] of the form (58), the functional integration
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over u in (57) can be performed exactly to yield

olyl = k| (exp -2 [EZCET

X QaO(x) — 0,(0)] dx)A[v]d>[vJﬂ>(v),
(60)

in which @, (x) is the inverse of the complex symmetric
matrix

Qaﬂ(x) = Caﬂ(x) - iMaﬂ(x)9 (6])
and the quantity
Al = (IHIIQ,,,(x)l)_’ )

is defined in terms of a formal product of the deter-
minant of Q,,(x) at all x, with a multiplying constant
absorbed into D(v). Let us now transform the integra-
tion variable in (60) from the real-valued field
v = v(x) to the complex-valued field z = z(x),where

2,(x) = 029 [v5(x) — 50}, (63)

in which Q}(x) is a complex symmetric matrix that
squares to the inverse of the complex symmetric
matrix (61),

03 = 0k, 0 Q5kx) = 0ax). (64)

We evaluate the function-space determinant

det [82,(x")[dv,(x")] = det (Q;}(x')a(x' — X"

¥
+ 25 0 ) (69)
v,(x")
by first noting that (61) and (56) gives
00ul) _ i Mat) _ 6" — )
dv,(x") ov,(x")
=0 for t"<1. (66)

Thus, the algebraic relationship between Q- }(x) and
Q,5(x) implies that
b
045 (x) =0 for
dv,(x")
and therefore, by performing an elementary calcula-
tion similar to (40), we find that (65) produces
det [dz,(x")/dv,(x")] = 11 IQ,TJ}(x)l = Alv]. (67)

all 2

” ’

t <t,

Hence we have

D(z) = [det (9z,(x")/6v,(x"N]D(V)

= A[V]D(), (68)
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from which it follows that (60), expressed in terms
of the integration variable (63), is given by

Dly] = ka (exp -—;}fza(x)za(x) dx) Oy + Q*z]‘l)(z).
(69)

In (69), Q= [pr(x)] is a complex symmetric
matrix that squares to the complex symmetric matrix
(61), and K is the class of all complex-valued z = z(x)
such that Q¥z = (Q¥z)* is real. By combining Egs.
(61), (56), and (63), we obtain a quadratic integral
equation for Qtin terms of y and z,

0L (00} (x) = 0,4(%)
= Coplx) — i f [04()z,(x) + 7,(:)]

X G(x’ — x) dx'. (70)

Solution of (70) for Q* allows the functional integrand
in (69) to be expressed explicitly in terms of y and z,
and then the functional integral can be evaluated by
exact or approximate techniques.

A detailed study shows that the general solution
to the integral equation (70) is unobtainable in
closed form. Thus it is necessary to consider special
approximate solutions for Q?}, associated with
distinct generic cases for C,p(x), in order to proceed
with the final evaluation of (69).

V. C-DOMINANT TURBULENCE

Here we consider the most immediate special
approximate solutions admitted by (70), namely
those valid in cases for which the C,4(x) term is
dominant over the integral term on the right side of
(70) for the significant range of values of the com-
ponents of z and y in (69). Such “C-dominant
turbulence” is characterized by the approximate
solution to (70)

Qaﬂ(x) = Caﬁ(x)9 (71)

and the positive-definite nature of C,z(x) then implies
that Qg,,(x) o~ Céﬁ(x) is real and can be taken to be
positive definite. More explicitly, by expressing C,z(x)
in terms of its real positive eigenvalues 4,(x) and real
eigenvectors €;,(x),

3
Caﬂ(x) = izlli(x)eia(x)eiﬂ(x)’ (72)

we have B
Q2(x) 2= 3 (o) ey (e)eip(x). (73)

i
It follows that the class K of z for the functional
integration in (69) is the function space of all real
fields z = z*. Putting the form (30) into (69), we
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obtain
Oy] = k(exp 1 f f Vo) Sog s )
X yy(x") dx’ dx”)I[y], (74)

in which the functional integral that remains is
1ty) = [[exp (=4 [[ 00K, ¥z
= [[re500 2

x Ch(x")z,(x") dx’ dx")]i)(z)
= (const){det [K,s(x', x")]}

X (exp %ffya(x’)nﬂ(x', x")yp(x") dx’ dx”).
(75)

We have evaluated the functional integral in (75) by
evoking the displacement-invariance of the infinitesi-
mal volume element to reduce the integral to a
standard form,!® with the real symmetric kernels that
appear in the final member defined by

Kop(x', X") = $0,50(x" — x")
+ CL(x)Sulx', x)ChH(x")  (76)
and
T;ﬂ(xl’ xll) Effsay(x” x/”)c%'é(x/ll)Kd—El(x/l/’ xlll/
x C?ﬂ(xl’l/)s’,ﬂ(x””, x”) dxlll dxll/l. (77)
In the latter definition the real symmetric kernel

K (x', x") is the inverse of (76), defined implicitly by
the equation

f K2, 0K p(x, x") dx = 8,,(x' — x"). (78)

The product of all eigenvalues of the symmetric
kernel (76) appears in (75) as {det [K, 4(x", x")]}, a
quantity independent of y by virtue of the fact that
(76) is independent of y. Hence, the substitution of
(75) into (74) and the normalization condition (50)
produces the result

®y] = exp (—% f f VX Segl¥', %) = Toglx', )]

X yp(x") dx’ dx”), (19)

which shows that the probability distribution is
approximately Gaussian with the two-point velocity
correlation tensor (54) given by

R, (X', x") = 8,,(x,x"y — T,(x',x"). (80)
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We now specialize to the simplest possible forms
for C,p(x) and for A(x) in (20) and (21), namely,
Caﬂ(x) = Aaaﬂ’
h(x) = £4(x),

in which 4 and £ are positive constant physical
parameters. With the forms (81) and (82), we find
that (76), (77), and (20) become

Kop(x', x7) = §0,40(x" — x") + AS,4(x", x"), (83)

(81)
(82)

nﬂ(xl, x//) —_ lfsay(xl, x”l)Ky—él(x”I, xllll)

x Saﬂ(x"”’ xll) dx”/ dx”//’ (84)
Spv(x,s x”)
az
= £{5 0 — 0VE)GlIx = X114 1)
0x,0x,

= @my Y (e + O, + 3 +
X [(x, — x)(xy — x3) — (x; — x)(x; — x7)5,,1}
x {exp [—(x; — xo)(x, — x)[4»(t' + )]}, (85)

where definition (11) is recalled for the second
member in the two-point correlation tensor (85). It
follows from (85) that

fSay(x’, x)S,4(x, x") dx

_o(:2

0x,0x,

- 6,,vv,%)(—v,%)

fo(Ix’ — x|t + HG(x — X", t + ") dx

- (2

1 !
0x,0x,

- 6qui')(—Vir)

xf G(Ix' — x|, t' + 1" + 2t) dt
0

.

’ ’
0x,0x,

- 6,WVi')<—v)-1

x f [G(IX' — X'|, 1" + " + 20)/ar] dt
0
aZ
— 2
: (ax,;ax;
= E(29)71S,4(x", x"),

with use being made of the convolution equation

_ awvi,) @) IG(x — x|, ' + 1)

(86)

fG([x’ —xI, ' + DG(x — X|, t + ")
= G(|x" — x"f, ' + 1" + 21)

and the equation (13) satisfied by (I1). Because (86)
shows that the iterated two-point correlation tensor
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is simply proportional to (85), the inverse of (83)
prescribed by (78) is

Kj(x', x") = 28,56(x" — x")
— 4I(AE + IS 40", XY (87)

Hence, (84) reduces to
Tp(x', x") = AE(AE + 9)7S,(x", ) (88)

with the substitution of (87) and (86). We finally
obtain the two-point velocity correlation tensor (80)
as

R, (x', X") = v(AE+ »)7IS,(x", x). (89)

Rigorous for C-dominant turbulence with the forms
(81) and (82), the remarkably simple result (89)
should be compared with the general expression (A5)
in the Appendix for the two-point velocity correlation
tensor associated with weak turbulence. The C-

dominant turbulence features a decay law for the:

specific kinetic energy

o=o0(t)= "%(uu(x)u;t(x)> = %Rmt(x’ x)
= (A& + »)71S,,(x, x)
= 3. 2 (m)y RE(AE + vy i, (50)

by virtue of the contracted expression obtained from
(89) and (85) with x’ = x” = x. It is interesting to
note that the decay law (90), o oc £7%, is associated
with the final period for wind-tunnel turbulence
generated in the usual fashion by a square-mesh grid.
Whether a two-point velocity correlation tensor with
the form (89) and the decay law (90) are related to
other varieties of physical turbulence for the entire
duration of decay is a question that will be answered
by future experimental measurements. In any event,
the exactly solvable theory of C-dominant turbulence
is a mathematical prototype for the evaluation of (69)
subject to (70).

APPENDIX: TWO-POINT VELOCITY CORRE-
LATION TENSOR FOR WEAK TURBULENCE

The formulation given in Sec. III leads to an
immediate expression for the two-point velocity
correlation tensor

Ryy(x', x") = (u,(x)u,(x"))

in the case of “weak turbulence,” represented by a
statistical ensemble of velocity fields with G:iili small
compared to i for all x and all ¢ > 0, so that only
the leading low-order terms in the iteration solution
series (17) are significant. Assuming that the proba-
bility distribution HAD[ﬁ] is Gaussian and invariant
under translations of space, we have a two-point

(AT)
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correlation tensor of the form (20), a characteristic
functional (30), and the expectation values

({xVTLx") = S, (X, X"),
(@,(x")i,(x") i (x")) = 0,

(XYY (X" ) (X))
= ‘w(xr’ xn)spa(xm’ xuu) + S,‘p(x', X”I)Sw,(x”, x/m
+ S‘m(x', xm/)Svp(xn’ xl/l)- (A4)

(A2)
(A3)

Then by putting (17) into (A1) we obtain
R,,(x', x") = S,(x, x")
+2 f Grapx’ = V)Gralx" — ")
X Sy (¥’ Y)Sps(y's ¥') dy' dy”
+4 f Guagl¥' = ¥)Gppoly’ — 1)
X Sy(x", ¥")Ses(y's y7) dy’ dy”
+ 4vaaﬁ(x’I = Y )Gy — V")

X 8,(x", ¥)S4(v", ) dy" dy" + O(S?),
(A5)

where the space-time coordinate arguments of the
three-index Green’s function (9) are abbreviated in
Guap(¥) = Gp(x, 1), and the property of the auto-
correlation tensor S, (x, x) = (function of 7 alone) has
been employed in order to eliminate three terms
which vanish. The integral terms appearing in (AS)
can ordinarily be evaluated by analytical or numerical
procedures for specialized two-point correlation
tensors (20) with A(x) prescribed.
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In a previous paper, a method has been developed which allows a calculation in the same manner of all
multiplicities occurring in the theory of linear representations of the classical compact Lie groups. This
method is applied to the group SO(9) and some of its subgroups which are of interest in physics. It is
demonstrated with the group SO(9) as example that this method of calculating the multiplicities allows
us to accumulate in a condensed way a large amount of information and, moreover, that this method can
be easily applied to any other (classical, compact) rank-4 group and its semisimple subgroups.

I. INTRODUCTION

In a previous paper’ a simple method has been
developed by means of which the multiplicities
arising in the theory of linear (irreducible) repre-
sentations of the classical (compact) Lie groups can be
obtained in the same manner from a given pattern
(containing a certain number of representations). For
each of the multiplicities—multiplicity of weights
(“inner multiplicity”’), multiplicity arising in the
decomposition of the inner direct product of two
representations (“outer multiplicity”), and branching
multiplicities—a different diagram is applied to the
pattern according to essentially the same rules.
Through the application of these diagrams to the
pattern, the desired multiplicity is obtained. Sub-
sequently, this method for the calculation of the
multiplicities was applied to the classical groups of
rank 2, resulting in a complete compilation of all
multiplicities for a limited number of representations
of these groups.

The present paper deals with the application of the
results of Ref. 1 to classical groups of rank 3 and 4.
The motivation for this program is twofold: Several
of the rank-3 and rank-4 groups are used in physics.
For example, Wigner’s SU(4),? the chains of groups

S0(7) > G, > S0(3),
501 + 1) > 50(3),

SUQRI+ 1) > S021 + 1), etc.,

in atomic spectroscopy,®! and others. Moreover,
groups and subgroups not used at the present time
might some day become of interest to physics. Thus,
the knowledge of the multiplicities associated with
these groups is certainly of interest. It is one of the
aims of this paper to demonstrate that, whenever the
multiplicities of a (set of) representation(s) of some
rank-3 or rank-4 group become of interest, it presents
no difficulty to set up patterns and diagrams by means
of which these multiplicities can be easily obtained.
(Strictly speaking, this is true only for representations
with not too high dimensionality; otherwise, the
pattern becomes unmanageable. In physics, however,

usually only the first few representations of a group are
used. Since representations with dimensionalities well
in the ten thousands can still be handled with relative
ease, it is assumed that all representations of the rank-3
and rank-4 groups of interest to physics fall into the
domain of the applicability of this method.)

The second purpose of this paper is to demonstrate
that a pattern (together with the diagrams) amounts
almost to a “tabulation” of all multiplicities for a set
of representations of a group. Even more, a pattern
amounts as well to a “tabulation’ of all multiplicities
of all those representations of the subgroups of a
group which are contained in the pattern. And this
holds for all semisimple (Lie) subgroups of the group.
Thus, a pattern together with the diagram amounts
to an implicit compilation (“tabulation’’) of inner
multiplicities, outer multiplicities, and branching
multiplicities for all those representations of the group
and all those representations of its (semisimple)
subgroups which are contained in the pattern. Thus,
any single pattern may contain data which are other-
wise widely scattered throughout the literature—if
at all known.

It would be unnecessary to give patterns and
diagrams for all the rank-4 groups and their semi-
simple subgroups. Not all of these groups are of
immediate interest. Instead the group SO(9) will be
taken as an example. The choice of SO(9) as example
is motivated by the fact that, on the one hand, the
group SO(9) and some of its subgroups are of interest
to physics, while on the other hand the group SO(9) is
as good as any other rank-4 group to demonstrate the
two points made above. Namely, the patterns and
diagrams which are given for SO(9) will demonstrate
(a) the relative ease with which the multiplicities of any
(classical) rank-3 or rank-4 group (and its subgroups)
can be obtained and (b) the amount of information
contained in just a few patterns. In all, two patterns
and four diagrams will be given. Pattern P, of Fig. 5
and pattern P, of Fig. 6, corresponding to the defining
representations (for all definitions and rules refer to
Ref. 1) D(2,2,0,0) and D[}(5,5,1,1)] of SO(9)
respectively, contain the following information (the
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patterns are deliberately kept small in order to serve
as illustrative examples).

(1) The weight diagrams of four representations of
G,, of 12 representations of SO(S5), of 16 representa-
tions of SO(7), and parts of 18 representations of
SO(9). Moreover, there are a number of representa-
tions of SO(3) contained in the pattern. Which repre-
sentations of SO(3) [or any other semisimple subgroup
G’ of SO(9)] occur in the pattern depends on which
subgroup SO(3) (which semisimple subgroup G’) is
considered.

The weight diagrams are not always given explicitly,
but in the language of d.w. numbers.! Nevertheless,
the explicit weight diagrams can be easily obtained
from the pattern as follows from its construction
(Ref. 1). For the particular representations included
in the pattern, see Sec. IL

(2) The multiplicities of weights for all these repre-
sentations of the groups G,, SO(5), SO(7), and SO(9).

(3) The Clebsch-Gordan series for all these repre-
sentations of the groups G,, SO(S), and SO(7) with
any other representation of these groups.

(4) The branching multiplicities

SO(7) - G,, SO(9) - S0(3), SO(7)— SO(3),

SO(5) - SO(3), and G,— SO(3)
for the representations included in the patterns. [Here
SO(3) is the so-called principal SO(3) subgroup® used
in atomic spectroscopy (see Sec. III).] The branching
multiplicity of any of these groups with respect to any
simple or semisimple subgroup can be obtained from
these patterns too, once the mapping onto the sub-
group and the diagram corresponding to the subgroup
have been determined. [It might, however, for the
branchings of the SO(9) representations, be necessary
to enlarge or complete the SO(9) pattern. This will
happen if a part of the pattern which is not given
should be mapped onto weights of the subgroup which
participate in the determination of the branching
multiplicity.]
II. THE GROUP S0O(9)

In this section all information pertaining to the
patterns and diagrams, Figs. 1-6, will be given. How-
ever, no information given in Ref. 1 will be un-
necessarily repeated. Thus, Ref. 1 is essential for an
understanding of this paper. (All rules for obtaining
the different multiplicities are given in Ref. 1.) The
reader is therefore explicitly referred to Ref. 1.

The group SO(9): Simple negative roots are
ﬂl = (030’ 0, _1)’ '82 = (0, 0, -1, 1)’
183 = (Oa -1,1,0), /34 = (—19 1,0, 0)’
R=4%(7,53,1).
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The weights are

m= (ml’ my, ms, m4)7
m, all integers or all half-integers.

Sets of equivalent weights: Weights which go over
into another by a permutation of their components
with or without a change of sign of some of their
components belong to the same set of equivalent
weights. Thus, the order of the Weyl group is 244!

Dimensionality of representations:

dim D(M) = (M, — M, + Di(M, — M, + 2)
X H(M; — M, +3)(M; — M; + 1)
X ¥ (My — M; + 2)(My — My + 1)
X #(My + My + 6)5(M; + M, + 5)
X My + M, + HE(M, + M, + 4)
X 3 (M, + M, + 3)§(M; + M, + 2)
x +2M; + )3 (2M, + 5)

X 32M; + 3)(2M, + 1),
with

M > My, > M; > M, >0 (d.w. condition).

Diagrams: In Fig. 1, the diagram for the multiplicity
of weights for the groups SO(9), SO(7), SO(5), and
SO(3) is given. It should be noted that the diagram is
not complete but adapted to the pattern (elements
which cannot contribute have been deleted).

In Fig. 2, the diagram for the branching multiplicity
SO(7) — G, is given. The diagram for the multi-
plicity of weights for G, is obtained from this diagram
by deleting the element (0, 0; 1) and by changing the
sign 0, > — 9, for all other elements. [The resulting
diagram is different from the diagram given for G,
in Ref. 1. The reason is that the simple roots which
arise through the mapping L of SO(7) onto G, are
(—1,1,0) and (1, —2, 1). Thus, the two simple roots
are not only different from the ones used in Ref. 1
but, moreover, one of them is a positive root. This
latter property has the effect that now also regative
k; values can appear. This has, however, no conse-
quences if the counting process is adapted in the
obvious way (a negative value k; means counting
“backward”’].

In Fig. 3, the diagram for the Clebsch-Gordan
series for the groups SO(7) and SO(S) is given.

In Fig. 4, the diagram for the Clebsch-Gordan
series for the group G, is given. What was said about
negative values of k; for Fig. 2 holds also for this case.

The diagram for restrictions to the SO(3) subgroups
is given by the two elements (j; 1) and (j + 1; —1),
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1 n2
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1 224 50(9)
O oo gl ... pHe ... pHIqHS ... 2ptgb9 ... 2(pq)+10
FIG. 1
-1 1 1/3(-phq)-1
1 -1 0
-1 1 q+l
! -t 13(zpra)+s Fic. 1. Diagram for
-1 1 2/3(p+2q)+4  the multiplicity of
L a 5 weights for SO(9),
0.e2Myed. o 2M,03. 0 2(M 4 My 42) P SO(7), S0(5), and
SO(3). This diagram
1 -1 o0 is to be applied to
-1 1 0 M -Myed FIG. 4 dominant weights only.
1 -1 o} Hzﬂtjoz
-1 1 0 2§43 qu. 2. Diagram for
multiplicity of weights
0uan2Myvde . 2M,93. . 2(M #Mas2) ... 2H, 95, .. 2(M +My43) of G,. See text. Diagram
for branching multi-
-1 1 M -Mo4l 0 plicity SO(7) — G,.
1 -1 My-Mosl M M2
-1 1 R FiG. 3. Diagrams for
1 1 MMl 2M 5 Clebsch-Gordan series
172 for the groups SO(7)
0uuu2Myad. . 2Mys3. 